You may use the information and images contained in this document for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include proper citation. If material is used for other purposes, you must obtain written permission from the author(s) to use the copyrighted material prior to its use.

Use of Environmental DNA for Detecting Cryptic Species in Wetland Habitats: A Case Study of the Western Chicken Turtle (*Deirochelys reticularia miaria*)

Mandi L. Gordon¹, Jason Nagro^{1,3}, Danielle DeChellis^{1,3}, Louisa Collins², Hannah Nelson², J.J. Apodaca², Jenny Oakley¹, and George J. Guillen^{1,3}

¹Environmental Institute of Houston, University of Houston-Clear Lake, Houston, TX, USA
 ²Tangled Bank Conservation, Asheville, NC, USA
 ³College of Environmental Sciences, University of Houston-Clear Lake, Houston, TX, USA

TPWD SPR-0504-383

Gordon@uhcl.edu; 281-283-3794

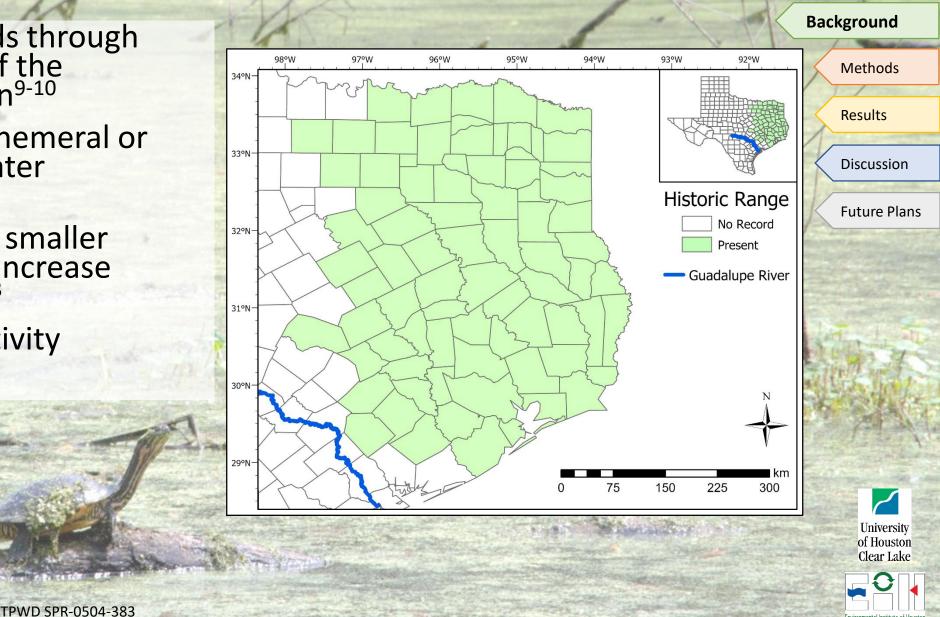
Texas Chapter of the Wildlife Society 2023 Annual Meeting; Houston, TX 24 February 2023

Conservation Need

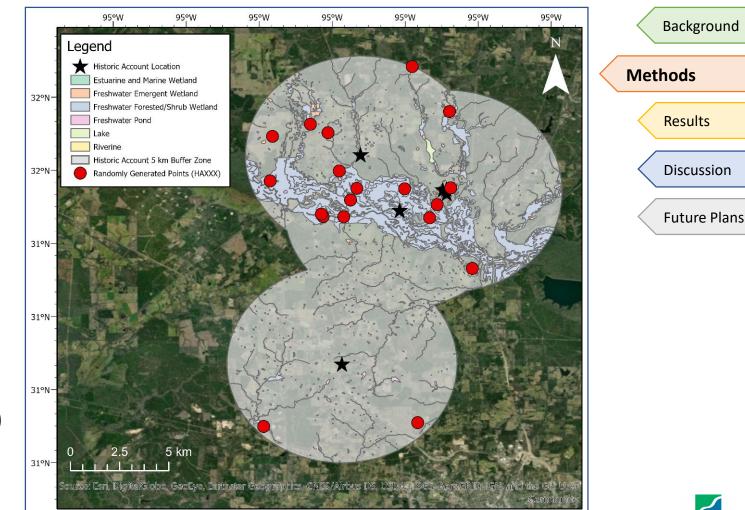
- Petitioned for protection under ESA¹
- Significant 90-day findings²
 - 4 of 5 factors evaluated
 - SSA due in 2024
- Current status throughout range³⁻⁸
 - Critically imperiled Missouri
 - Imperiled Arkansas and Louisiana
 - Vulnerable Mississippi
 - SGCN Oklahoma and Texas

¹Center for Biological Diversity 2010
²USFWS 2011
³Missouri Department of Conservation 2022
⁴Arkansas Game and Fish Commission 2005
⁵Holcomb et al. 2015
⁶Mississippi Natural Heritage Program 2018
⁷Oklahoma Department of Wildlife Conservation 2016
⁸Texas Parks and Wildlife Department 2020

Bac	Background				
	Methods				
	Results				
\langle	Discussion				
	Future Plans				



Western Chicken Turtles in Texas


- Historic range extends through east Texas to north of the Guadalupe river basin⁹⁻¹⁰
- Typically found in ephemeral or depressional freshwater wetlands¹¹⁻¹²
- Shorter life span and smaller population size may increase perception of rarity¹³
- Discrete seasonal activity patterns¹⁴⁻¹⁵

⁹Dixon 2013
¹⁰USFWS 2016
¹¹Buhlmann et al. 2008
¹²Bowers et al. 2021
¹³Dinkelacker and Hilzinger 2014
¹⁴McKnight et al. 2015
¹⁵Bowers et al. 2022

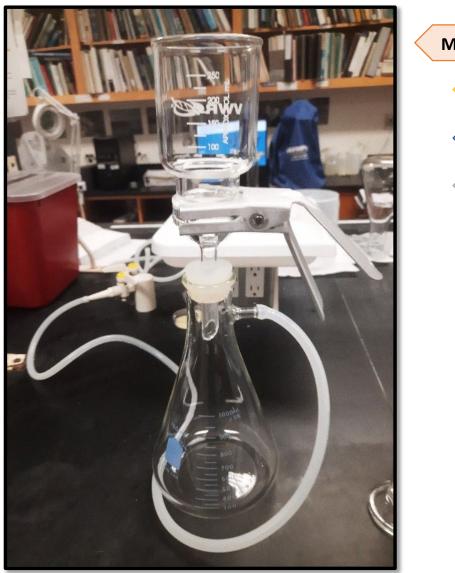
General Study Design

- Randomized locations
 - Historic occurrence data¹⁶⁻²⁰
 - Counties in historic range⁹⁻¹⁰
 - Priority wetlands (NWI)^{19,21}
- Non-randomized locations
- Seasons^{12,15,19}:
 - One event per site per month
 - In-season (late-March to early-July)
 - Out-of-season (August to February)

¹⁶iNaturalist 2020 ¹⁷VertNet 2020 ¹⁸Adams and Saenz 2011 ¹⁹Ryberg et al. 2016 ²⁰Franklin et al. 2019 ²¹USFWS 2019

https://www.uhcl.edu/environmental-institute/research/current-projects/western-chicken-turtle

https://www.uhcl.edu/environmental-institute/research/publications/


Field Methods

- Water sample collection (4 x 500 mL)
 - Ambient (A) = surface+scum
 - Resuspended sediment (R) = disturbed top 1 cm; collected from plume
- Soil (S) sample collection (3 x 1 tbsp)
- Pre-packaged kits
- Water quality variables
 - Temperature
 - Dissolved Oxygen (mg/L)
 - pH
 - Specific conductivity (μS/cm)

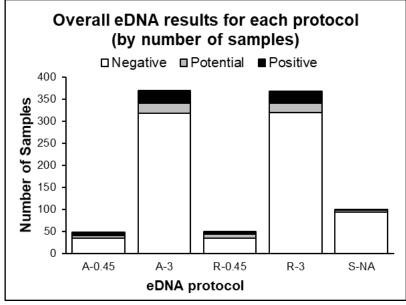
Sample Processing and Lab Methods

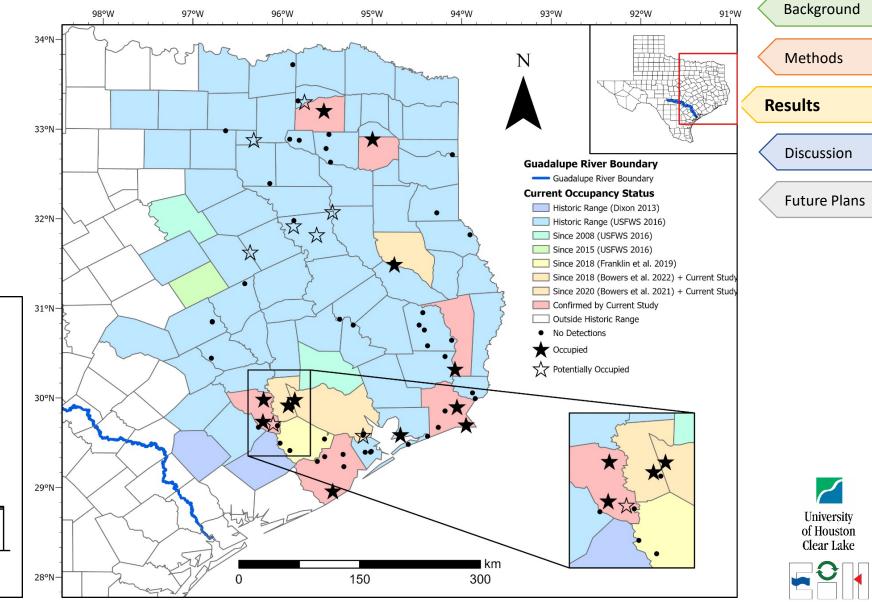
- Processed in dedicated lab spaces
- Two filter sizes (cellulose nitrate)
 - A 0.45 μm and 3.0 μm filters
 - $R-0.45~\mu m$ and 3.0 μm filters
 - Soil (no pre-processing)
- Filtered within 72 hours of collection
- Analyzed by Tangled Bank
 Conservation (qPCR) 3 replicates
 - Two replicate amplifications = positive
 - One replicate = potential

\langle	Background			
Methods				
	Results			
\langle	Discussion			
	Future Plans			

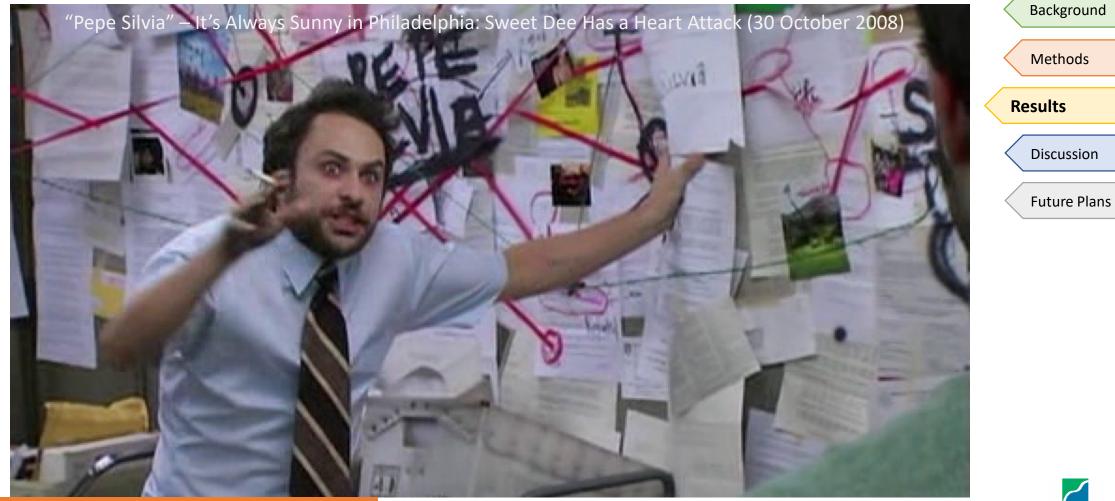
Houston

Methods - Data Analyses


- Software
 - Statistical analyses in SigmaPlot v14.5
 - Detectability analyses in R and RStudio (package: unmarked)
- Calculations
 - Number of results for each protocol
 - Proportion of results for each protocol
 - Detectability (rho, ρ) for each protocol
 - Overall results from protocol comparison matrix
 - Developed as part of larger study
 - Compares efficiency and efficacy across multiple protocols
 - Considers three broad categories
 - Logistics (9 sub-categories), Statistics (7 sub-categories), Costs (5 sub-categories)

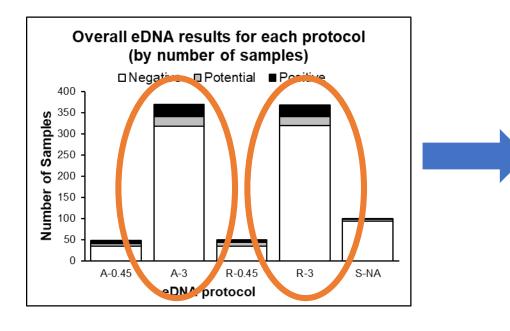


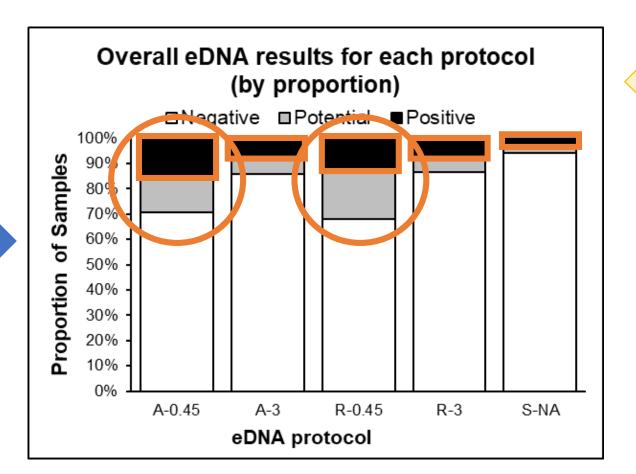
University of Houston


Results – Area Surveyed and Effort

- In-season: 346 events
 66 sites; 33 counties
- Out-of-season: 28 events 4 sites; 4 counties
- *N* samples = 935
 - A-0.45: *n* = 48; A-3.0: *n* = 369
 - R-0.45: *n* = 50; R-3.0: *n* = 368
 - Soil: *n* = 100

Results


- Number of results for each protocol
- Proportion of results for each protocol
- Detectability (rho, ρ) for each protocol
- Overall results from protocol comparison matrix



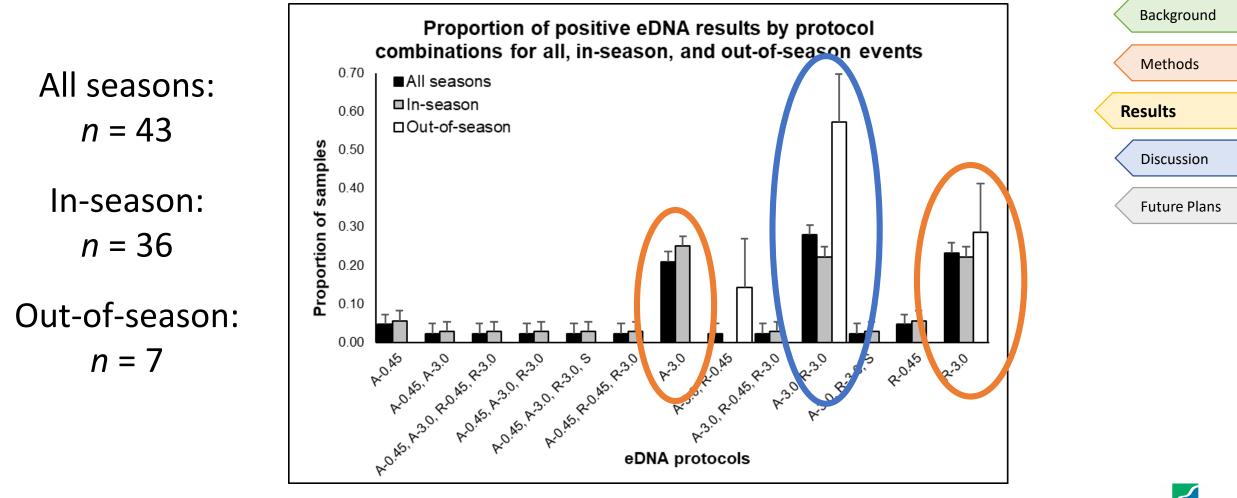
Results – Overall Sample Results (full dataset)

N = 935

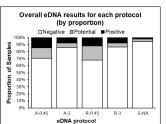
- Number of results for each protocol
- Proportion of results for each protocol
- Detectability (rho, ρ) for each protocol
- Overall results from protocol comparison matrix

University of Houston

Background

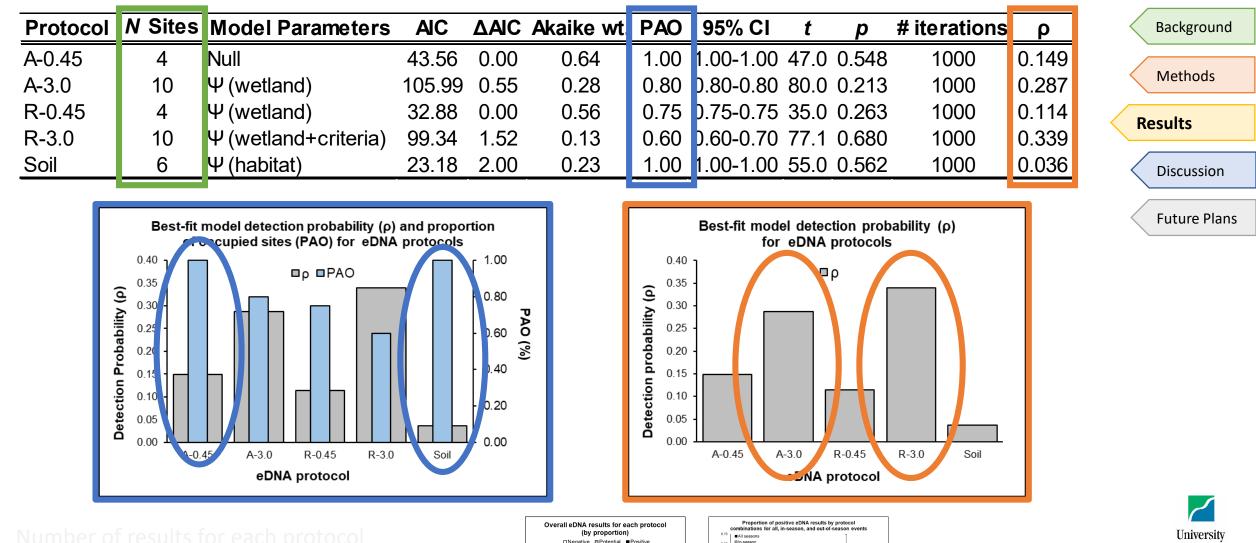

Methods

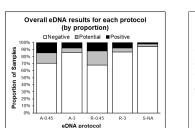
Discussion

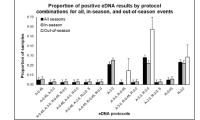

Future Plans

Results

Results – Positive Results Only

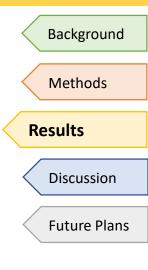

- Number of results for each protoco
- Proportion of results for each protocol
- Detectability (rho, ρ) for each protoco
- Overall results from protocol comparison matrix

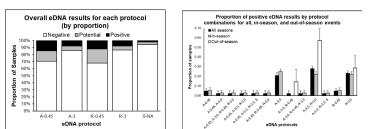


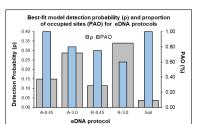

University

Results – Best-fit Detectability Models (in-season only)

- Detectability (rho, ρ) for each protocol

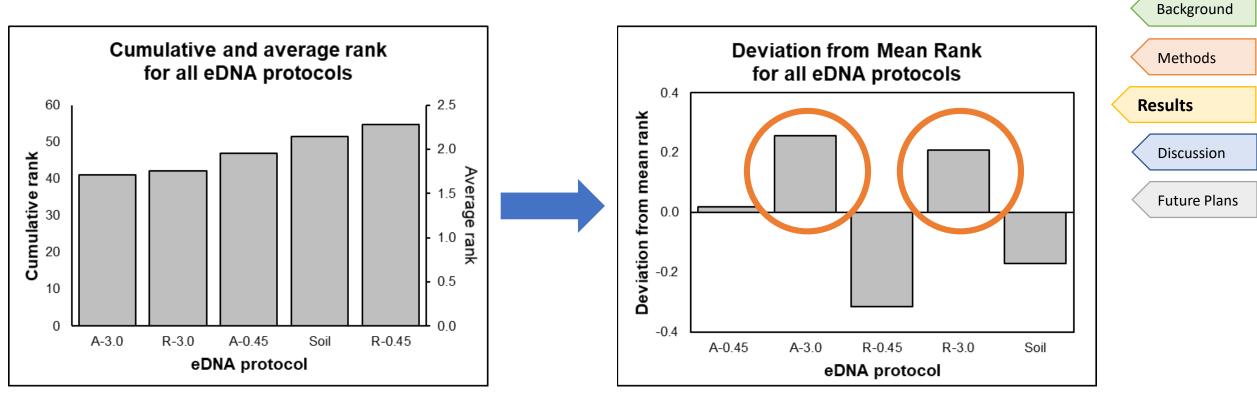


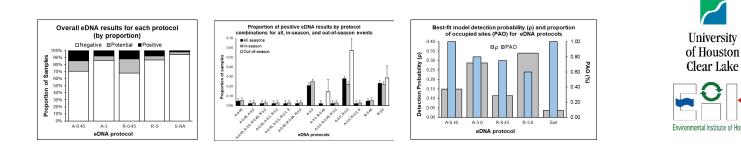



Results – Protocol Comparison Rubric

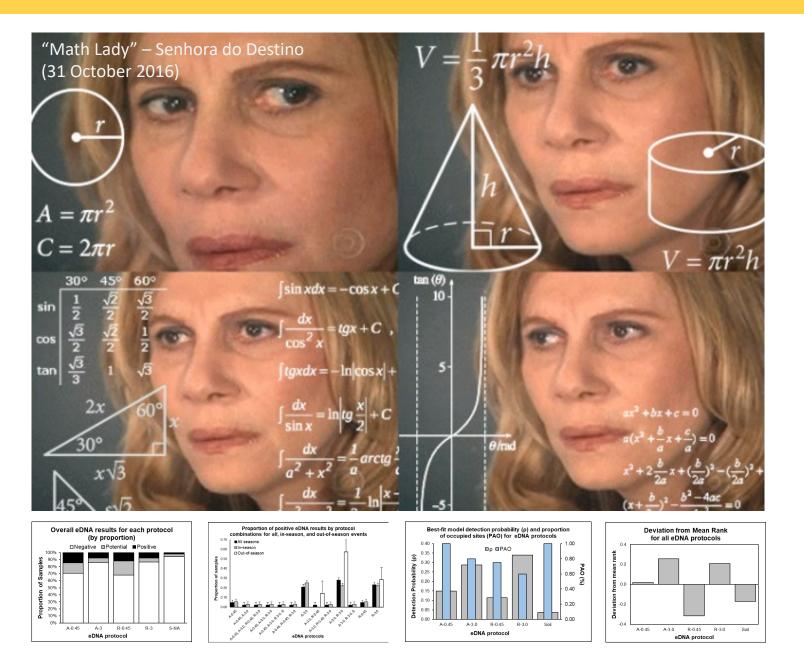
			Sub-Category Values				
Category	Sub-category	Rank Scale	A-0.45	A-3.0	R-0.45	R-3.0	Soil
LOGISTICS	Permissions	low=best	0.63	0.63	0.63	0.63	0.63
	Planning	low=best	0.78	0.78	0.78	0.78	0.75
	Difficulty of gear transport	low=best	1.10	1.10	1.10	1.10	0.93
	Difficulty of implementation	low=best	0.53	0.53	0.53	0.53	0.50
	Time and maintenance	low=best	1.47	1.47	1.47	1.47	0.43
	Technical expertise	low=best	1.15	1.15	1.15	1.15	0.59
	Performance variability	low=best	0.58	0.58	0.58	0.58	0.61
	Potential for failure	low=best	0.75	0.75	0.75	0.75	0.69
	Resolution	low=best	0.81	0.81	0.81	0.81	0.86
STATISTICS	Number of personnel (N _{pers})	low=best	8	8	8	8	7
	Number of sites (N _{sites})	high = best	4	4	4	4	6
	Detection probability (ρ)	high = best	0.1490	0.2870	0.1140	0.3390	0.0360
	"Catch" per unit effort (CPUE)	high = best	0.5833	0.9739	0.4800	0.9825	0.1412
	Detection proportion (Det%)	high = best	15%	24%	12%	25%	2%
	Geographic coverage (G _{cov})	high = best	0.00017%	0.00017%	0.00017%	0.00017%	0.00001%
COSTS	Stages of analysis (N _{stages})	low=best	10	10	10	10	10
	Start-up costs (C _{start})	low = best	\$2,500	\$2,500	\$2,500	\$2,500	\$1,550
	Cost per event (C _{event})	low=best	\$896	\$888	\$1,126	\$1,115	\$529
	Time (pre-field) (T _{pre})	low=best	0.25	0.25	0.25	0.25	0.25
	Time (field) (T _f)	low=best	0.25	0.25	0.25	0.25	0.17
	Time (post-field) (T _{post})	low=best	0.38	0.37	0.62	0.61	0.16

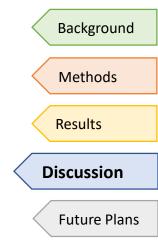
- Number of results for each protocol
- Proportion of results for each protocol
- Detectability (rho, ρ) for each protocol
- Overall results from protocol comparison matrix





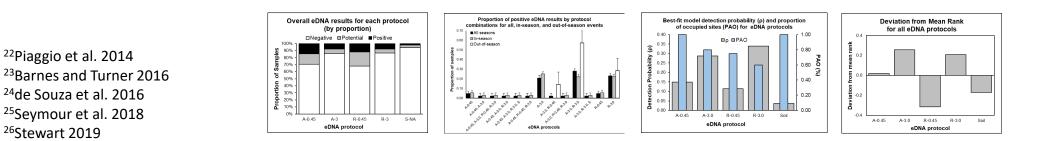
Results – Protocol Comparison Rubric Ranks




Kruskal-Wallis One-way ANOVA on Ranks H = 4.585, df = 4, p = 0.333

- Number of results for each protoco
- Proportion of results for each protocol
- Detectability (rho, ρ) for each protocol
- Overall results from protocol comparison matrix

Discussion



Discussion

- Best recommendation: combination of ambient and resuspended samples filtered with 3.0 μm filter (A-3.0 and R-3.0) – not soil samples
- Questions about consistency in data
 - 28 events with positive eDNA detections and no confirmation from another protocol
 - Nine events with positive eDNA detections and confirmation from another protocol
 - Three events with detections using other protocols but no positive eDNA results
 - Two instances of soil samples collected at the location of a WCT no eDNA detection
- Factors impacting eDNA residency or degradation rates²²⁻²⁶:
 - Holding time persistence decreases after 96 hours since deposition
 - Exposure to UV radiation, especially during drought (year 1)
 - Dilution, especially from heavy rain or flooding (year 2)
 - Increased presence of inhibiting compounds
 - Seasonal activity of target species

	Background		
	Methods		
	Results		
Discussion			
\langle	Future Plans		

Future Plans and Recommendations

 Continued evaluation of water quality impacts to eDNA detectability and detection rates

Background

Methods

Results

Discussion

Future Plans

- Final report for larger Western Chicken Turtle (WCT) project will be published in March
- Recommendations for next steps:
 - Evaluation of eDNA detection at locations specifically known to be occupied by WCT, especially in off-season
 - Increased number of composite samples
 - Evaluation of eDNA detection using larger pore size filters or different filter types (e.g., not cellulose nitrate)
 - Evaluation of eDNA persistence and time frame(s) needed to maximize DNA amplification (all steps of the process)

https://www.uhcl.edu/environmental-institute/research/current-projects/western-chicken-turtle

https://www.uhcl.edu/environmental-institute/research/publications/

Acknowledgements

Questions: gordon@uhcl.edu

Field Technicians and Students:

Aurora Alvarez, David Bontrager, Sarah Bullard, Ashley Collins, Danielle Davidson, Grey Dennis, Kelly Garcia, Nick Hughes, Trey Hughes, Jaimie Kittle, Story Lesher, Isabel Marzullo, Taylor McKenzie, Victoria Ontiveros, Adriana Puzon, Sarah Schrock, Cecilia Silva, Brandi Stevenson, Taylor Thomisee, Cecilia Thompson, Mathew VanBemmel, Tori Vourganas, Haley Welshoff, Emily Yargeau, and Jimmy Welch

Research and Funding Partners:

Lauren Borland, Brandon Bowers, Paul Crump, Toby Hibbitts, Jake Jackson, Bill Kirby, Colin McDonald, Wade Ryberg, Laura Speight, Danielle Walkup

Individual Partners:

Bill Adams, Ben Anderson, Ben Atkins, Trey Barron, Ryan Boone, Kyle Brunson, David Butler, Terry Corbett, Howard Crenshaw, Johanna Delgado-Acevado, John Dickson, Donald Deitz, Connor England, Bethany Foshee, Kristin Fritz-Grammond, Wes Griggs, Doug Head, Ron Holley, Mikayla House, Rob Hughes, Frank Hyatt, Cindy Jones, John Maguera, Christopher Maldonado, Tiffany Malzhan, Jeremy Mayhew, Trey McClinton, Brandon Melton, Ken Miniard, Mike Morrow, Bill Muncrief, Vanessa Neace, Wes Newman, Robert Nocito, George Russell, Dan Saenz, Monty Shank, Kenny Shaw, Matt Singer, Pauline Singleton, Tina Solomon, Robert Speight, Kirk Tareilo, Nelda Taylor, Jim Warren, Jason Watson, John Whittle, Jim Willis, Ashley, John, and 29 private landowners

State & Federal Permitting, Institutional Protocols, and Access Permissions:

Texas Parks and Wildlife Department Scientific Permit for Research SPR-0504-383; UHCL Institutional Animal Care & Usage Committee protocol 0320.001.R1; Texas Parks and Wildlife Department Aerial Wildlife Monitoring permit M-2885; special use and land access permits issued by Texas Parks and Wildlife Department, U.S. Fish and Wildlife Service, U.S. Department of Agriculture Forest Service, River Authorities

Funded by:

Texas Comptroller of Public Accounts

Literature Cited

- ¹Center for Biological Diversity (CBD). 2010. Petition to list 404 aquatic, riparian and wetland species from the southeastern United States as threatened or endangered under the Endangered Species Act. Center for Biological Diversity, 1145 pp.
- ²U.S. Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants; Partial 90-Day Finding on a Petition to List 404 Species in the Southeastern United States as Endangered or Threatened with Critical Habitat. 59836-59862 pp.
- ³Missouri Department of Conservation (MDC). 2022. The Missouri Comprehensive Conservation Strategy. Missouri Department of Conservation. 534 pp.
- ⁴Arkansas Game and Fish Commission (AGFC) 2005. The Arkansas Wildlife Action Plan. Fowler, A. and J. Anderson (Eds.). Arkansas Game and Fish Commission, 1686 pp.
- ⁵Holcomb, S.R., A.A. Bass, C.S. Reid, M.A. Seymour, N.F. Lorenz, B.B. Gregory, S.M. Javed, and K.F. Balkum. 2015. Louisiana Wildlife Action Plan. LDWF. Baton Rouge, Louisiana, 705 pp.
- ⁶Mississippi Natural Heritage Program (MNHP) 2018. Special Animals Tracking List. Museum of Natural Science, Mississippi Dept. of Wildlife, Fisheries, and Parks, Jackson, Mississippi. 13 pp.
- ⁷Oklahoma Department of Wildlife Conservation (ODWC). 2016. Oklahoma Comprehensive Wildlife Conservation Strategy: A Strategic Conservation Plan for Oklahoma's Rare and Declining Wildlife. Oklahoma Department of Wildlife Conservation, 422 pp.
- ⁸Texas Parks and Wildlife Department. 2020. Species of greatest conservation need: All taxa (Microsoft Excel Database). Retrieved from https://tpwd.texas.gov/huntwild/wild/wildlife_diversity/nongame/tcap/sgcn.phtml.
- ⁹Dixon, J.R. 2013. Amphibians and Reptiles of Texas 3rd ed. Texas A&M University Press. College Station, Texas, USA.
- ¹⁰U.S. Fish and Wildlife Service (USFWS). 2016. Western Chicken Turtle *Deirochelys reticularia miaria*. USFWS. https://www.fws.gov/southwest/es/ArlingtonTexas/pdf/WCT_FactSheet_20160808.pdf [Accessed: 11 September 2019].
- ¹¹Buhlmann, K.A. 2008. Chicken Turtle Deirochelys reticularia. In: Buhlmann, K.A., Tuberville, T., Gibbons, W. (Eds.). Turtles of the Southeast. University of Georgia Press, Athens, GA, pp. 84-88.
- ¹²Bowers, B.C., D.K. Walkup, T.J. Hibbitts, P.S. Crump, W.A. Ryberg, A.M. Lawing, and R.R. Lopez. 2021. Should I stay or should I go? Spatial ecology of Western Chicken Turtles (*Deirochelys reticularia miaria*). Herpetological Conservation and Biology 16(3):594–611.
- ¹³Dinkelacker, S.A., Hilzinger, N.L., 2014. Demographic and Reproductive Traits of Western Chicken Turtles, *Deirochelys reticularia miaria*, in Central Arkansas. *Journal of Herpetology* 48: 439-444.
- ¹⁴McKnight, D.T., Harmon, J.R., McKnight, J.L., Ligon, D.B. 2015b. The Spring–Summer Nesting and Activity Patterns of the Western Chicken Turtle (*Deirochelys reticularia miaria*). Copeia 103: 1043-1047.
- ¹⁵Bowers, B.C., R.L. Hibbitts, T.J. Hibbitts, D.K. Walkup, W.A. Ryberg, R.R. Lopez, and P.S. Crump. 2022. Fecundity, female maturation, and nesting season of Western Chicken Turtles (*Deirochelys reticularia miaria*) in Texas. *Chelonian Conservation Biology*. 21(2):225–231.
- ¹⁶iNaturalist. 2020. On-line Resource. California Academy of Sciences and National Geographic. Available online at https://www.inaturalist.org/. Accessed 20 February 2020.
- ¹⁷VertNet. 2020. Online Resource. National Science Foundation. Available online at http://vertnet.org/. [Accessed 20 January 2020].
- ¹⁸Adams, C.K. and D. Saenz. 2011. Use of artificial wildlife ponds by reptiles in eastern Texas. *Herpetological Bulletin* 115:4-11.
- ¹⁹Ryberg, W., Wolaver, B., Prestridge, H., Labay, B., Pierre, J., Costley, R., Adams, C., Bowers, B., Hibbitts, T. 2016. Final Report: Habitat Modeling and Conservation of the Western Chicken Turtle (*Dierochelys reticularia miaria*) in Texas. Institute of Renewable Natural Resources, Texas A&M University, College Station, Texas. 79 pp.
- ²⁰Franklin, C.J., C. Bednarski, C. Drake, and V. Gladkaya. 2019. *Deirochelys reticularia miaria* (Western Chicken Turtle) Reproduction. *Herpetological Review* 50(1): 121.
- ²¹U.S. Fish and Wildlife Service (USFWS). 2019. National Wetlands Inventory Version 2: Surface Waters & Wetlands Inventory. https://www.fws.gov/wetlands/nwi/Overview.html. [Accessed: 12 December 2019].
- ²²Piaggio, A.J., Engeman, R.M., Hopken, M.W., Humphrey, J.S., Keacher, K.L., Bruce, W.E., Avery, M.L. 2014. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. *Molecular Ecology Resources* 14: 374-380.
- ²³Barnes, M.A. and Turner, C.R. 2016. The ecology of environmental DNA and implications for conservation genetics. *Conservation Genetics* 17: 1-17.
- ²⁴de Souza, L.S., Godwin, J.C., Renshaw, M.A., Larson, E. 2016. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms. *PLOS ONE* 11: e0165273.
- ²⁵Seymour, M., I. Durance, B.J. Cosby, E. Ransom-Jones, K. Deiner, S.J. Ormerod, J.K. Colbourne, G. Wilgar, G.R. Carvalho, M. de Bruyn, F. Edwards, B.A. Emmett, H.M. Bik, and S. Creer. 2018. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology. DOI: 10.1038/s42003-017-0005-3.
- ²⁶Stewart, K.A. 2019. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. *Biodiversity and Conservation*. 28:983–1001.