Copyright

by

Joshua James Jaeger

INFLUENCE OF FRESHWATER INFLOW IN THE BRAZOS RIVER ESTUARY

by

Joshua James Jaeger, B.S.

THESIS

Presented to the Faculty of The University of Houston-Clear Lake In Partial Fulfillment Of the Requirements For the Degree

MASTER OF SCIENCE

in Environmental Science

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

MAY, 2022

INFLUENCE OF FRESHWATER INFLOW IN THE BRAZOS RIVER ESTUARY

by

Joshua James Jaeger

APPROVED BY

George Guillen, Ph.D., Chair

Cynthia L. Howard, Ph.D., Committee Member

Dongmin Sun, Ph.D., Committee Member

RECEIVED/APPROVED BY THE COLLEGE OF SCIENCE AND ENGINEERING:

David Garrison, Ph.D., Associate Dean

Miguel A. Gonzalez, Ph.D., Dean

Dedication

I dedicate this work to my late maternal grandfather James Mooney, who passed away shortly after my education at University of Houston- Clear Lake began. You were a model for everyone around you through both your military service, and dedication to your family. What I remember most fondly about you is how after a life full of strife and adventure, you were able to find solace and peace in retirement. From the cultivation of your luxurious garden to teaching me how to play dominoes, I never saw you without a smile on your face. I wonder now if all those times you would watch your children and grandchildren play, that you were in fact reminiscing about all your achievements in life and that your smile demonstrated your satisfaction that you could finally sit back and enjoy those achievements like a well-written novel. You had many things to be proud of in your life, but you always seemed most proud of your children and grandchildren. You witnessed all your daughters grow up, achieve a higher education, and start families. You witnessed all your grandchildren excel academically and as individuals, but I regret that the completion of this paper was not something you could enjoy in your lifetime. As the next chapter of my life begins, I look back on your life with the hope that when the story of my life reaches its final chapter, I too can have a life full of family, friends, and frivolity that I can enjoy as much in retirement as I did in the journey.

Acknowledgements

First and foremost, I would like to thank my thesis chair Dr. George Guillen, without whom I would not have had the opportunity to earn my degree. I would also like to offer an additional thanks to Dr. Guillen and my committee members for their dedication and assistance in making this thesis complete. I also extend my gratitude towards the Environmental Institute of Houston (EIH) and University of Houston- Clear Lake (UHCL) which not only provided funding for the current and previous years for sampling, but the resources necessary to complete the project in a timely manner. Of course, such money and resources are meaningless without hard-working individuals to utilize them. For that reason, I cannot possibly express how grateful I am to the staff, faculty, and students of EIH who committed the hundreds of hours necessary to collect, compile, and process all the data presented in this paper. I would also like to offer thanks to the Texas Water Development Board (TWDB) for managing all the contracts for the Brazos River studies conducted by EIH. The Texas Commission on Environmental Quality (TCEQ) also deserves recognition for publishing the standards used in this paper and previous reports for complete ecological analysis of the Brazos River. Finally, the resource agency scientists and committee members of the Brazos Basin and Bay Area Stakeholder Committee (BBASC) and the Brazos Basin and Bay Area Expert Science Team (BBEST) who provided valuable time and guidance since 2012 deserve a great deal of credit and thanks for the culminated results presented in this paper.

ABSTRACT

INFLUENCE OF FRESHWATER INFLOW IN THE BRAZOS RIVER ESTUARY

Joshua James Jaeger University of Houston-Clear Lake, 2022

Thesis Chair: George Guillen, Ph.D.

The influence of freshwater inflow on estuarine ecology is a topic that receives a lot of attention due to estuaries acting as medians to oceanic and freshwater environments. Freshwater inflow has varying effects depending on the morphology of the estuary, and the Brazos River is one of only three rivers in Texas with a riverine estuary that discharges directly into the Gulf of Mexico. The Environmental Institute of Houston (EIH) has been collecting data to categorize the ecology and hydrology within the estuary since 2012 when the Brazos Basin and Bay Area Stakeholder Committee (BBASC) formally addressed the need for research assessing the impacts of freshwater inflow. Project objectives included: (1) Describing the temporal variation in hydrology in the

lower Brazos River, (2) evaluating the relationships between nekton community, freshwater inflow, seasonality and water quality using graphical and statistical methods, (3) characterizing nekton abundance, diversity, and community composition, (4) identifying focal species for different sites, flow tiers and seasons, and (5) identifying any future research needs. Data acquired from the United States Geological Survey (USGS) gage #08116650 was used in order to assess the normal trends of variation in discharge (cfs), as well as determine if data utilized far upstream from the estuary could be used to accurately predict discharge and water quality downstream. Automated monitoring loggers were used to collect long-term data for salinity (psu), temperature (°C), dissolved oxygen (DO) (mg/L), and depth (m) beginning in 2014 in order to create predictive models from daily average discharge. The results indicated that discharge in the Brazos River does exhibit predictable seasonal patterns of increased flow during the spring and reduced flow during the summer, yet still exhibits a huge degree of variation within seasons and between years. The Brazos River is also subject to extreme flow conditions at an increasing rate despite having an average annual discharge of only 7,400 cfs. The regression analysis from the automated loggers and USGS discharge data indicates that salinity and water depth are strongly correlated to flow and react in the form of exponential decay and sigmoidal growth respectively. Temperature proved to not be significantly correlated with flow, but multiple linear regression analysis with DO data demonstrated a complex relationship with flow and temperature. Two-way ANOVAs were used to determine if variations in water quality variables- temperature, salinity, DO, pH, turbidity (NTU), thalweg depth (m), and Secchi disk transparency (m) could be explained by sites, TCEQ flow tiers, or an interaction between both. The results showed that all variables exhibited significant differences ($p \le 0.05$) between flow tiers and sitesthe only exception being temperature. The only two variables tested with a significant

vii

interaction effect between flow tier and site were salinity and pH. Principal component analysis was also used to determine whether season, flow tier, or spatial differences could explain the variability in water quality between samples. The results indicated that season is the primary driver of variability due to temperature having the highest eigenvector coefficients for each principal component calculated for surface and bottom profile. Pearson correlation analysis was also used to determine how water quality could be used to predict nekton community diversity. Salinity proved to be the most significantly correlated to nekton communities sampled using both an otter trawl and beam trawl. Nekton community metrics in the form of total catch, species richness, Shannon-Wiener diversity, Shannon evenness, Margalef Richness and catch per unit effort (CPUE) were subjected to nonparametric tests in order to test for significant differences between season, site, and flow tier. The results indicated the larval fish community sampled with the beam trawl near the shore was significantly affected by season, while spatial differences and flow tier explained the variation in nekton communities sampled mid-channel with the otter trawl. The results of this study corroborate many of the conclusions drawn from earlier studies on the ecology of the lower Brazos, as well as provide additional evidence of the highly dynamic nature of the Brazos estuary, while also providing further justification for continued and expanded research.

viii

TABLE OF CONTENTS

List of Tables	. xi
List of Figures	xii
INTRODUCTION:	1
Characteristics of an Estuary	1
Physiological Factors Affecting Estuarine Ecology	3
Effects of Season and Flow	
The Brazos River and Estuary	8
Research Objectives	
MATERIALS AND METHODS:	14
Study Area	14
Fieldwork	
Hydrology	
Water Quality	
Nekton	
Data Analysis	
Hydrology	
Water Quality	
Nekton	
RESULTS:	40
Hydrology	40
Sampling History	
Extreme Event Analysis	
Annual Variation	
Seasonal Variation	
Linear Modeling of Downstream Discharge	
Water Quality	
Continuous Monitoring	
Profile Summary	
Interactions between Site and Flow Tier	
Principal Component Analysis	
Nekton Community	
Community Metrics	
Correlation Analysis	
Community Similarity	
Multivariate Analysis	

Variation in Nekton Diversity	
DISCUSSION:	105
Hydrology	105
Long-Term Temporal Variation	105
Seasonal Variation	107
Annual Variation	108
Linear Modeling of Downstream Discharge	109
Water Quality	111
Continuous Monitoring	111
Water Quality Profile	
Nekton Community	
Correlation Analysis	
Community Similarity	
Variation in Nekton Diversity	
Conclusions and Recommendations	133
REFERENCES:	139
APPENDIX A: SUPPLEMENTARY PHOTOS	145
APPENDIX B: SITE LOCATIONS	157
APPENDIX C: DATA SOURCES	158
APPENDIX D: CONTINUOUS MONITORING GRAPHS	159
APPENDIX E: SUMMARY STATISTICS FOR WATER QUALITY PROFILE	164
APPENDIX F: SURFACE WATER GRAB LABORATORY RESULTS	183
APPENDIX G: NEKTON COLLECTION SUMMARY STATISTICS	186
APPENDIX H: STATISTICAL OUTPUT FOR HYDROLOGY RESULTS	212
APPENDIX I: STATISTICAL OUTPUT FOR WATER QUALITY RESULTS.	223
APPENDIX J: STATISTICAL OUTPUT FOR NEKTON RESULTS	250

LIST OF TABLES

Table 1. Site type categories and the data collected for each category	16
Table 2. Sampling history of the Brazos estuary by EIH with the corresponding TCEQ flow tiers for each sample date and which studies the data collected was first used for (TCEQ 2014). Sample events 21 and 22 were independent surveys conducted by EIH; nekton sampling did not occur during sample event 22	19
Table 3. Environmental flow standards for the Brazos River based on mean daily discharge (cfs) at USGS Gage #08116650 near Rosharon, TX (TCEQ 2014)	20
Table 4. Results of simple linear and multiple regression analysis for daily average dissolved oxygen (DO) data.	63

LIST OF FIGURES

Figure 1. Map of the lower Brazos River depicting the locations of all sampling sites, USGS Gage #08116650 near Rosharon, TX, the boundary of TCEQ segment 1201, and Tide Station 8772477 at Freeport, TX
Figure 2. Continuous monitoring gear setup. A) Jenny Oakley and Natasha Zarnstorff securing Baro TROLL and its PVC protector to light post at Middle Site. B) Baro TROLL and game camera deployed at Middle site. C) HOBO loggers and Level TROLL in their PVC protectors deployed at Upper site
Figure 3. Nekton sampling gear used during the study. A) Beam trawl deployment on right bank at site B31. B) Otter trawl retrieval at site B10
Figure 4. Hydrographs of daily average discharge (top) and continuous discharge (bottom) from USGS gage #08116650 from January 1, 2011, to December 31, 2019. Samples from current and previous studies with corresponding discharge values are denoted by (•) (Bonner et al. 2017; Bonner et al. 2015; Miller 2014)
Figure 5. Hydrographs of monthly average discharge measured at USGS gage #08116650 from January 1, 2011, to December 31, 2019 (Top) and average annual discharge (cfs) of the calendar year from 1968 to 2019 using complete data (Bottom)
Figure 6. Dot plot of daily average discharge from USGS gage #08116650 from 1967 to 2019 (Left), and histogram of extreme flow events from the same time period (Right). The green line represents the median, the blue line is the mean, and the red line is equal to the mean $+ 2\sigma$
Figure 7. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each month during the years 1967-2019 (Top) and 2011-2019 (Bottom). Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between months (p<0.006)
Figure 8. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year from 2011-2019. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between years (p≤0.006)
Figure 9. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each season from 1967-2019 (Top) and 2011- 2019 (Bottom). Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z- value indicates a significant difference between seasons (p≤0.006)
Figure 10 Dunn's multiple comparison test for significant differences in daily

Figure 10. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the summer months. Bars

signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between years (p<0.006)	51
Figure 11. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the winter months. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between months (p≤0.006).	52
Figure 12. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the spring months. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between months (p<0.006).	53
Figure 13. Linear regression models between field discharge and USGS discharge values with fitted line equations and adjusted (R^2) values.	54
Figure 14. Scatterplots of daily average temperature and daily average discharge for each site (Top). Polynomial regression models for each site with corresponding (R ²) values between daily average discharge and Julian day (Bottom).	56
Figure 15. Polynomial regression model of daily average temperature and Julian day for the combined data of all continuous monitoring sites.	57
Figure 16. Simple linear regression model between the log transformed daily average salinity and daily average discharge data (Top). Nonlinear regression model between the daily average salinity and daily average discharge data (Bottom).	59
Figure 17. Simple linear regression model (Top) and nonlinear regression model between the daily average depth and daily average discharge data	61
Figure 18. Scatterplots of daily average dissolved oxygen (DO) and daily average discharge for each site (Top). Linear regression models for each site between daily average discharge and daily average temperature (Bottom)	62
Figure 19. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean temperature (°C) between flow tiers.	66
Figure 20. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean dissolved oxygen (mg/L) between sample sites (Top) and flow tiers (Bottom)	67
Figure 21. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean turbidity (NTU) between sample sites (Top) and flow tiers (Bottom).	68

Figure 22. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean mid-channel total depth (m) between sites (Top) and flow tiers (Bottom).	69
Figure 23. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean Secchi disk transparency (m) between sites (Top) and flow tiers (Bottom).	70
Figure 24. Confidence intervals (95%) plot of mean salinity (psu) for each flow tier between different sample sites. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 63.	71
Figure 25. Confidence intervals (95%) plot of mean salinity (psu) for each sample site between different flow tiers. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 64.	72
Figure 26. Confidence intervals (95%) plot of mean pH for each flow tier between sample sites. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 65.	73
Figure 27. Confidence intervals (95%) plot of mean pH for each sample site between flow tiers. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 66	74
Figure 28. Principal component analysis (PCA) of normalized water quality profile samples taken at the bottom. Individual samples are grouped by flow tier (A) and season (B).	76
Figure 29. Principal component analysis (PCA) of normalized water quality profile samples taken at the surface. Individual samples are grouped by flow tier (A) and season (B).	77
Figure 30. Principal component analysis (PCA) of normalized water quality profile samples taken from sample sites in the Gulf of Mexico (GOM) at the surface (A) and bottom (B).	78
Figure 31. Pearson correlation matrix between hydrology and nekton community metrics with bottom profile water quality. Red circles represent negative correlations while positive correlations are colored blue. Strength of correlation is indicated by circle size and color saturation. Any blank square indicates an insignificant ($p > 0.05$) correlation between the two corresponding variables. (OT = otter trawl, BT = beam trawl).	82
Figure 32. Pearson correlation matrix between hydrology and nekton community metrics with surface profile water quality. Red circles represent negative correlations while positive correlations are colored blue. Strength of correlation is indicated by circle size and color saturation. Any blank square indicates an insignificant ($p > 0.05$) correlation between the two corresponding variables. (OT = otter trawl, BT = beam trawl).	83

Figure 33. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by site. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner
Figure 34. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by season. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner
Figure 35. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by flow tier. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner
Figure 36. Dendrogram of GOM otter trawl collections describing percent similarity between nekton abundances at different sites using cluster analysis
Figure 37. Dunn's multiple comparison test for significant differences in beam trawl total catch between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroniadjusted critical Z-value indicates a significant difference between seasons (p≤0.006)
Figure 38. Dunn's multiple comparison test for significant differences in otter trawl total catch between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between sites (p≤0.006)
Figure 39. Dunn's multiple comparison test for significant differences in otter trawl total catch between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between flow tiers (p \leq 0.006)
Figure 40. Dunn's multiple comparison test for significant differences in beam trawl species richness between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between seasons (p≤0.006)
Figure 41. Dunn's multiple comparison test for significant differences in otter trawl species richness between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between sites (p \leq 0.006)

Figure 42. Dunn's multiple comparison test for significant differences in otter trawl species richness between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between flow tiers (p≤0.006).	. 98
Figure 43. Dunn's multiple comparison test for significant differences in otter trawl Shannon-Wiener indices between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between sites (p≤0.006).	. 99
Figure 44. Dunn's multiple comparison test for significant differences in beam trawl Shannon-Wiener indices between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between seasons (p<0.006).	. 99
Figure 45. Dunn's multiple comparison test for significant differences in beam trawl Shannon-Wiener evenness between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between seasons (p<0.006).	100
Figure 46. Dunn's multiple comparison test for significant differences in otter trawl Margalef richness indices between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between sites (p≤0.006).	101
Figure 47. Dunn's multiple comparison test for significant differences in beam trawl Margalef richness indices between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between seasons (p≤0.006).	102
Figure 48. Dunn's multiple comparison test for significant differences in beam trawl CPUE between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between seasons (p<0.006).	103
Figure 49. Dunn's multiple comparison test for significant differences in otter trawl CPUE between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-adjusted critical Z-value indicates a significant difference between sites (p<0.006)	103

Figure 50. Dunn's multiple comparison test for significant differences in otter
trawl CPUE between flow tiers. Bars signify the 95.009% confidence interval of
the median (\bullet = median). Pairwise comparisons greater than the Bonferroni-
adjusted critical Z-value indicates a significant difference between flow tiers
(p≤0.006)104

INTRODUCTION:

Characteristics of an Estuary

In ecology, the boundaries that separate one distinct biological community from another are seldom abrupt; it is more common to find a transitional community serving as a barrier- this is what is known as an ecotone (Holland 1988). Since ecotones are essentially mixing areas for biotic an abiotic factors for multiple ecosystems, it is not uncommon to find greater diversity in the plant and animal communities than you would find in either habitat the ecotone separates (Gosz 1993). One of the greatest examples of this phenomenon is where rivers and streams meet the ocean to form one of the most important ecosystems on Earth: estuaries (Day et al. 2012). Much of the ecological contribution from estuaries is rooted in the highly specialized vegetation communities that only exist in estuaries. This ecosystem is one of the most productive in the worldprimary productivity can yield up to 80 metric tons per hectare of plants (Mitsch and Gosselink 2015). This high primary production also contributes to sediment collection and buildup- a feature that not only allows it to act as a sink for minerals, but also to cope with the onset of rising sea levels. Estuaries can function as sinks, sources, and transformers of nutrients, sediments, and other chemicals depending on the balance freshwater inflow, tidal exchange, underlying geology, and land-use (Day et al. 2012). Inevitably, since everything from the corresponding watershed eventually flows downstream into the estuary, these ecosystems act as sinks for a variety of limiting nutrients out at sea such as nitrogen, but can also function as sinks for limiting nutrients in freshwater systems like phosphorus brought in by rising tides (Day et al. 2012; Mitsch and Gosselink 2015). The occurrence of flooding, heavy rain, large tides, watershed size, land slope, human influence, etc. are all factors which can contribute to the export of these nutrients upstream, out to sea, or to adjacent watersheds (Orlando et al. 1993).

Many of the nutrients that tidal marshes act as sinks for are inorganic in nature, but converted into organic forms before being exported- sulfur, iron, manganese, nitrogen, carbon, phosphorus (Day et al. 2012; Mitsch and Gosselink 2015).

One of the most recognizable roles that estuaries play is serving as habitat- both temporary and permanent- to a wide variety of organisms. As the waters are very productive, it offers a strong base to the food web, which makes estuaries ideal nurseries for many species of fish (Mitsch et al. 2015). Adapting to the constantly shifting salinity regime for even part of their life is ecologically rewarding for any fish species, as it helps them avoid potential predators that are restricted to upstream or oceanic habitatproviding refuge from both other organisms and adverse environmental conditions. Approximately 95% percent of the commercially harvested species- both bycatch and target species- in the Gulf of Mexico are classified as estuarine-dependent species (Pattillo et al. 1997; USEPA 1999). It is these estuarine-dependent species that contribute to the Western Atlantic Marine Regions high species richness and the 10-13% rate of endemism of fishes in the Gulf of Mexico (Helfman et al. 2009; Hoese and Moore 1977). Many species of fish in the Gulf of Mexico tend to spawn offshore in the summer, allowing the oceanic currents of winter to carry their larvae back towards land and into the estuaries to have a safe place to mature- the Gulf Menhaden (Brevoortia patronus) is a prominent example of this reproductive strategy (Sogard et al. 1987). Other fish species spend their entire lives in estuaries in order to mature and reproduce- a notable example is the Saltmarsh Topminnow (Fundulus jenkinsi) (Guillen et al. 2015). Fish are not the only animals to benefit from making estuaries part of their lifestyle; the Diamondbacked Terrapin (*Malaclemys terrapin*) are specialist reptiles that thrive only in estuarine waters from the coasts of Texas to Cape Cod, MA (George 2014). The ideal habitat conditions for small fish and vertebrates- as well as the animals the feed on- both

seasonally and year-round also provides critical foraging habitat for migratory species. Shorebirds such as the Willet (*Tringa semipalmata*) rely on estuaries as stopovers to feed and rest before proceeding north to their breeding grounds in sub-Arctic Canada and Alaska (Miller 2012).

Having such a pivotal role in the life cycles of many species of animals, diversity of roles in biochemistry, and unique geography, estuaries are also of great interest to humans. Estuaries throughout the world support multiple human activities including fisheries, recreational tourism, agriculture, transportation, urban centers and agriculture (Levinton 1995). A significant proportion of the world's largest cities including Houston and Galveston, TX, have been constructed on estuaries (NOAA 1990). The increased rates of decline of estuarine habitat and loss of fisheries production has inspired ongoing scientific investigations of the relationships of estuarine biodiversity, hydrology, and physiochemistry and how all these factors influence each other over time and during disturbance events- both natural and artificial (Lotze et al. 2006).

Physiological Factors Affecting Estuarine Ecology

Every estuary is unique because its ecological structure responds to a multitude of abiotic factors and environmental processes such as tidal patterns, freshwater inflow, climate, erosion, etc. As a result, this can complicate the application of observed relationships from one system to another even if they are in close geographic proximity. Local climate, freshwater inflow and tidal patterns all interact and influence water quality in an estuary. The scale at which these processes interact within the estuary can also subsequently affect variance in depth, area, and physicochemical variables such as turbidity, salinity and nutrients, which can help further classify estuaries (Engle et al. 2007).

The study of how salinity varies in response to freshwater inflow and how it in turn influences the ecology of estuaries is the topic of many current research projects. Although some factors like turbidity can create broad geochemical "zones" throughout the estuary, the salinity gradient in estuaries tends to be narrow, with most distinguishable zones occurring only around the extremes, namely the areas with high freshwater inflow (0.1-1.0 ppt) and high seawater inflow (\geq 34 ppt) (Guenther and MacDonald 2012). However, even though these areas tend to be small in comparison to the ecosystem as a whole, the area covered and the distance between them are insignificant when the variation in ecological communities demonstrates correlation with variations in salinity (Able et al. 2001). For example, the Mermentau River Basin in Louisiana has historically displayed stable gradients in salinity with lower freshwater discharge, and while the greatest diversity of species still occurred at the extremes, it was found in the more stable waters of Grand and White Lakes that marine species diversity exceeded that of freshwater species (Gunter 1956). Similar patterns were observed in Old Fort Bayou, Mississippi, where the assemblages of freshwater species were strongly correlated with salinity (Peterson and Ross 1991). Salinity affects organismal distribution, and salinity is in turn affected by changes in tidal patterns and freshwater inflow. The interaction of all these factors and the unique nature of each estuary makes it difficult to classify community structure based on these physiological variables alone. Nevertheless, even a regional understanding of the disparity between community changes between estuaries of similar attributes can prove useful in the future management and study of estuarine habitats (Guenther and MacDonald 2012).

Community composition typically changes gradually within the estuary, but there are also areas that experience rapid rates of change. These areas of rapid community change and environmental conditions are known as ecoclines and are of great scientific

interest. In Florida there has been strong evidence to support the idea of identifying ecologically relevant salinity zones by changes in nekton community along the salinity gradients in Tampa Bay and Charlotte Harbor (Greenwood 2007; Greenwood et al. 2007). They found that the most consistent changes in the nekton community composition occurred at the lower end of the salinity gradient which also exhibited the greatest diversity of freshwater species (Greenwood 2007). Within the Alafia River they also observed that increased freshwater inflow would push the tidal-freshwater interface – also known as the salt wedge or halocline- downstream to the mouth of the river with a concurrency of downstream shift in the center of abundance of many transient and marine species. Changes in downstream nekton abundance downstream were attributed more towards changes in salinity rather than freshwater inflow, but negative correlations between inflow and salinity observed suggests that freshwater inflow plays a pivotal role in affecting the locations of the salinity ecotone and therefore how quickly biodiversity changes (Greenwood et al. 2007).

The role that freshwater inflow has on affecting organismal distribution in estuaries appears to be based mostly on individual effects of physical factors on different organisms rather than leading to trophic cascades (Kimmerer 2002a). Dissolved oxygen (DO) concentration is another variable that influences the distribution of estuarine organisms, but unlike salinity, it is more variable throughout not only the estuary, but the entire watershed (Justus et al. 2014). Nevertheless, salinity and DO are both influenced by the mixing of water masses, and can lead to distinct zonation within an estuarine ranging from high velocity and energy areas near river mouths and tidal passes and lower energy areas such as the bay side of barrier islands (Bilotta and Brazier 2008). Stratification of salinity and DO is also possible due to differences in water temperature from the ocean and the freshwater source of the estuary. Water that is less saline and

warmer in temperature tends to be less dense and hold less oxygen, than colder, more saline water (Cloern et al. 2017). As the pattern goes, colder and saltier water sinks, and without sufficient mixing from freshwater influx, tides, wind, wave action, etc., sediments will sink to the bottom (Day et al. 2012). During periods where less vertical mixing occurs, debris and nutrients from runoff can settle in the estuary, contributing to phytoplankton and algal blooms. During these periods, photosynthesis can increase, contributing to higher oxygen levels at the surface, as well as increased acidity (Mitsch and Gosselink 2015). However, during phytoplankton die-offs, oxygen levels will plummet as a side effect of decomposition, which can be devastating for all layers of the estuary without vertical mixing (Armstrong 1987).

Effects of Season and Flow

The combination of physical factors and interactions at the marginal extremes have a dynamic effect on the ecosystem, and quantifying these effects on biota can be useful for establishing criteria for a healthy estuary (Sheaves et al. 2012). In Galveston Bay, TX it has been observed that the distributions of both the Atlantic Rangia (*Rangia cuneata*) and water celery (*Vallisneria americana*) are both strongly correlated to freshwater inflow, and even slight reductions can lead to declines (Parnell et al. 2011). Using this relationship, many studies have used such species as tools for assessing ecosystem health and to set criteria for flow standards in estuaries (Doering et al. 2002). However, many of these previous studies did not address the influence of seasonality on estuarine processes or species composition. Seasonal variation in freshwater inflow, physicochemical variables, tidal patterns and biota often exceeds whatever variability already exists between estuaries (Moskalski et al. 2011). For example, deeper tidal river fish communities within the Myakka and Peace rivers of southern Florida formed distinct seasonal groups with the highest densities overall occurring from June to October, and

November to March (Idelberger and Greenwood 2005). Further studies in the Peace River showed that during periods of low rainfall and decreased flow, fish assemblages in the upper river became more similar to communities in the high salinity regions of the lower river (Stevens et al. 2013). These seasonal reductions in freshwater input can stress oligohaline species that require lower salinities in the estuary, leading to the predictable declines of some of these more sensitive species (Kimmerer 2002b; Tsou and Matheson 2002). In most cases- within the Gulf of Mexico- the reduction of freshwater inflow occurs during summer months when lack of rainfall typically reduces river discharge (Wagner and Austin 1999).

The close coupling of salinity and freshwater inflow has been observed in multiple estuaries across all continents. In the Mediterranean it has been observed that freshwater renewal is most critical during the winter since seasonal recessions tend to occur during the summer (Basterretxea et al. 2017). Marine fish assemblages in the Breede River, South Africa have been shown to change very little in species diversity and abundance even when examined on an interannual time scale and occurrence of freshwater influx events that can account for nearly half of the annual precipitation (James et al. 2018). However, this pattern primarily applies to assemblages consisting mainly of species tolerant to higher salinity conditions. The same response was not observed in oligohaline freshwater and exclusively estuarine species (Lamberth et al. 2008). In the Matla River, India, variations in fish assemblages were significantly different at the river mouth and the upper reaches. Additionally, these differences were consistent when sampling events were grouped into pre-monsoonal, monsoonal, and postmonsoonal seasons (Mukherjee et al. 2013).

Events like monsoons, hurricanes, and seasonal flooding can have a strong effect on coastal ecosystems, but it is unclear how much of the normal seasonal and geospatial

patterns in an estuary are disrupted as a result. During flooding, the geomorphology of estuaries that exhibit less vertical mixing can be altered in such a way that changes in water parameters such as salinity can be classified more as disturbance rather than natural swings in biodiversity (Van Diggelen and Montagna 2016). Sampling events in the Matla River after Cyclone Aila revealed the absence of sixteen species but the presence of twelve previously undocumented species (Mukherjee et al. 2012). During the 2004 hurricanes in Tampa Bay and Charlotte Harbor Florida researchers found that any changes or displacement of fish and aquatic vegetation were significant only in the lower portions of the river. However, from a decadal perspective, the fish assemblages appeared to be quite stable and resistant to environmental disturbance (Greenwood et al. 2006). Nevertheless, there are quantifiable changes in water quality after such storm events, and how these changes relate to the sensitive habitat and biota of each individual estuary is difficult to predict (Davis et al. 2004).

The Brazos River and Estuary

The highest point of the Brazos River can be traced to the Blackwater Draw in Curry County, New Mexico from its mouth near Freeport, TX- a total length of approximately 2,060 kilometers (1,280 miles), making it the longest river in Texas (Kimmel 2011; Phillips 2006; USGS 2005). The upper Brazos River passes through an arid region known as the Llano Estacado- which is Spanish for "Staked Plains"- and as a result, many of its tributaries are not perennial (Kimmel 2011). The joining of the Salt Fork and Double Mountain Fork- approximately eight miles northwest of Rule, TX- is often considered the origin of the Brazos River (Figure 51). Despite both streams being classified as ephemeral instead of perennial, the meeting of these two water bodies has a higher rate of continuous flow than contemporary streams of the upper watershed like the Blackwater Draw (Kimmel 2011; Zeng et al. 2011). It is for this reason that the

confluence of these two rivers is officially recognized as the headwaters of the Brazos River.

The Brazos River has a mean annual discharge of approximately $7,400 \text{ ft}^{3}/\text{s}$ (cfs), with a watershed draining an area of approximately 118,000 km² (45,600 mi²) and encompassing a total of forty-two major reservoirs, making it the largest watershed in Texas (NOAA 1990; Phillips 2006; USGS 2005; USGS 2008). It is home to over seventy native fish species including several endangered species such as the Smalleye Shiner (Notropis buccala) and Sharpnose Shiner (Notropis oxyrhynchus) (Dahm et al. 2005; Wilde and Durham 2013). Prior to 1929, the river delta was located in present-day Surfside Beach, TX, until it was diverted approximately ten kilometers west by the U.S. Army Corps of Engineers over the span of approximately five years beginning in 1925 (Rodriguez et al. 2000). The purpose of the diversion was for the creation of a large and dependable port for the booming sulfur mining industry, but excessive flooding and sediment loading prior to the early twentieth century stalled efforts for decades (Salvant and McComb 1999; Townsend 2009). A diversion dam was constructed in the northwest portion of Freeport, TX- approximately 7.5 miles upstream from the original mouthalong with a diversion channel re-routing the main river from the dam to an outlet in the Gulf of Mexico- approximately 6.5 miles southwest of the original mouth in Surfside Beach, TX. Upon completion, the old river channel was dredged, and Freeport Harbor soon rose to become one of the largest ports in the United States (Townsend 2009). Though the short-term environmental impacts of the diversion are mostly undocumented, the characterization of the estuary due to its geography has remained relatively unchanged (Rodriguez et al. 2000).

The Brazos River has a riverine-type estuary, meaning the freshwater discharges directly into the Gulf of Mexico, thereby preventing an extensive and wide delta from

forming (Dyer 1997). The Brazos River is one of only three rivers in Texas that possess this type of estuary- the other two include the Colorado and Rio Grande (Miller 2014; White and Calnan 1990). The estuary is also wave-dominated and possesses a short residence time within the tidal portion of the river. This results in the estuary exhibiting oligohaline or low-salinity freshwater conditions even near the mouth (Orlando et al. 1993). It has previously been documented that estuaries with higher freshwater inflow and lower salinity tend to have a higher nutrient load, which can result in eutrophic conditions during warmer months (Palmer et al. 2011).

In 2007, the 80th Texas legislature passed Senate Bill 3 (SB 3), which amended the Texas Water Code §11.1471 in order to establish environmental flow standards for the major bays and rivers of Texas (Quigg and Steichen 2015). This led to the creation of the Brazos Basin and Bay Area Stakeholder Committee (BBASC) and the Brazos Basin and Bay Area Expert Science Team (BBEST) in 2011 in order to develop environmental flow recommendations for the Brazos River Basin and associated bay and estuary system. By March 2012, the BBEST had compiled and analyzed all available data in order to submit an environmental flow recommendation report to the BBASC. After six months of deliberation, the BBASC submitted their stakeholder recommendations report to both the Texas Commission on Environmental Quality (TCEQ) and Environmental Flows Advisory Group (EFAG) in September 2012 (BBASC 2012). The TCEQ then adopted environmental flow standards for the Brazos River Basin, which went into effect beginning March 6, 2014 (TCEQ 2014).

These standards were based on historical hydrological conditions adopted for instream standards at the Rosharon gage due to lack of sufficient biological response data in the lower tidal portion of the river (BBEST 2012). By the time the BBASC submitted their recommendations, a modern study conducted by the Environmental Institute of

Houston (EIH) at University of Houston- Clear Lake (UHCL) was underway in order to characterize the ecology of the Brazos estuary, which meant the most recent ecological data for review was only available from studies conducted in 1973-1975 by the Texas Parks and Wildlife Department (TPWD) and the Dow Chemical Company in 1982 (Emitte 1983; Johnson 1977; Miller 2014). Following the submission of the recommendation report to TCEQ, the BBASC also created a research implementation plan in 2013 in order to address gaps in the knowledge of how biota respond to the changing hydrology and whether any standards approved by the TCEQ would require further change (BBASC 2012; BBASC 2013). In response to the needs of such research, the Environmental Institute of Houston (EIH) at University of Houston-Clear Lake (UHCL) conducted studies in the Brazos River from 2014-2017 (Bonner et al. 2017; Bonner et al. 2015). Bonner et al. (2017) recommended further study and sampling during the summer months, examining stream water inflow effects on nearshore Gulf of Mexico waters, and continued long-term monitoring in order to validate and if necessary recommend alternative flow standards (Bonner et al. 2017; TCEQ 2014). Since the Brazos River estuary lacks a lagoon type estuarine system, the residence time within the tidal portion of the river is very short and results in lower salinities (Bonner et al. 2017). It has been previously documented that estuaries with higher freshwater inflow and lower salinity tend to have a higher nutrient load, which can result in eutrophic conditions during warmer months (Palmer et al. 2011).

Research Objectives

The primary interest of this study was to assess the seasonal and annual variation in freshwater inflow in order to evaluate the physiochemical changes in water quality and biological responses of nekton communities inhabiting the Brazos River estuary. In order to understand this, project objectives included: (1) Describing the temporal variation in hydrology in the lower Brazos River, (2) evaluating the relationships between nekton community, freshwater inflow, seasonality and water quality using graphical and statistical methods, (3) characterizing nekton abundance, diversity, and community composition, (4) identifying focal species for different sites, flow tiers and seasons, and (5) identifying any future research needs.

Data collected by Johnson (1977), Miller (2014), Bonner et al. (2015), Bonner et al. (2017) have shown the Brazos River to be highly dynamic in hydrology and supports a diverse nekton community, but the effects of seasonal variation have yet to be comprehensively investigated since there has been a lack of scientific research conducted during the summer months in recent years (BBASC 2013; Bonner et al. 2017; Bonner et al. 2017; Bonner et al. 2015; Emitte 1983; Johnson 1977; Miller 2014). The sampling of the current study focused primarily during summer in order address seasonal gaps in data in continuation with the studies conducted by Bonner et al. meant to address the research needs proposed by the BBASC (BBASC 2012; BBASC 2013; Bonner et al. 2017; Bonner et al. 2015).

Data collection for Bonner et al. (2015) began on October 30th, 2014, and concluded on October 19th, 2015. Data analysis during 2015 relied on data collected by Miller (2014) in order to have a larger data set for preliminary ecological and seasonal analysis in the Brazos estuary. The findings in 2015 suggested that the adopted flow tier standards by TCEQ were effective in detecting significant differences in water quality and nekton communities (TCEQ 2014). Time-series modeling between daily average discharge and water quality variables measured with in situ instrumentation helped to visualize how freshwater inflow influences water quality throughout the estuary. Subsequent statistical tests would quantify that influence by detecting significant differences in salinity and dissolved oxygen between different flow tiers. When assessing the relationship of nekton communities and freshwater inflow, it revealed that

community assemblages during high flow exhibited a greater spatial gradient from the river mouth to the upper reaches. During periods of decreased flow, species composition was more similar throughout the estuary. Data collection for Bonner et al. (2017) began on November 17th, 2016, and concluded on October 18th, 2017. The behavior of the halocline in the estuary was given greater attention in 2017 than 2015 by evaluating responses of water quality at both the surface and bottom. DO lacked significant differences between sites only at the surface, whereas the results of 2015 suggested there were no significant differences in sites at all due to the usage of all depth-interpolated profile measurements for statistical analysis (Bonner et al. 2015). Greater heterogeneity in sites was observed when examining bottom salinity versus surface salinity during low flow tiers. Weak correlations were observed between nekton community metrics and discharge, but similarity in community assemblages could still be observed when collections were classified by flow tier.

Freshwater inflow directly influences the nekton community through changes in velocity, flow and shoreline inundation and indirectly through changes in water quality including water temperature, salinity, total suspended solids (TSS), dissolved oxygen (DO), and nutrient loads. It seems highly likely that the Brazos River will display these trends given the existing evidence of similar patterns throughout the Gulf of Mexico and other habitats with similar climate patterns (Camacho et al. 2015; Greenwood 2007; Greenwood et al. 2007; Idelberger and Greenwood 2005; Mukherjee et al. 2013; Peterson and Ross 1991; Wagner and Austin 1999). Describing the "normal" range of responses of nekton and water quality to river discharge is important for development of predictive models that incorporate potential changes in freshwater inflow caused by diversions and/or reductions and assessing the reliability of current adopted freshwater inflow standards by the State of Texas (TCEQ 2014).

MATERIALS AND METHODS:

Study Area

The tidal portion of the Brazos River is legally defined as TCEQ segment 1201, which spans from its confluence with the Gulf of Mexico to 40.2 km (25 mi) upstream (TCEQ 2002; TCEQ 2004). Since the Bonner et al. (2015) study, there have been eleven study sites within this segment and one upstream of the segment (Figure 1Figure 1; Table 5). The current study also implemented nine additional sites in the nearshore waters of the Gulf of Mexico (GOM). Prior to 2014, the historical studies had only four primary sample sites, and they correlated closely to the current locations of sites B01, B10, B22 and B42 (Johnson 1977; Miller 2014). Sites were categorized based on the type of data being collected and the corresponding protocols followed in order to collect that data (Table 1). The names of each sample site were based on their location in the Brazos estuary- river or GOM- and their distance from the mouth (Table 5).

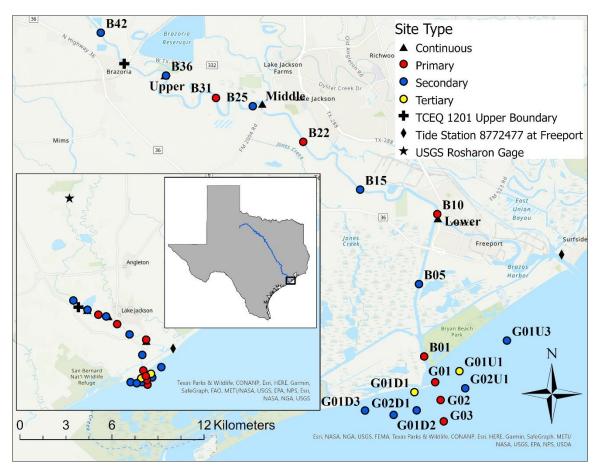


Figure 1. Map of the lower Brazos River depicting the locations of all sampling sites, USGS Gage #08116650 near Rosharon, TX, the boundary of TCEQ segment 1201, and Tide Station 8772477 at Freeport, TX.

Site Type	Level	Baro	HOBO ^c	Water Quality		O ^c Water Quality Nekton ^f		on ^f	
	TROLL ^a	TROLL ^b		Profile ^d	Grab ^e	BT	OT	ZP^*	
Primary				Х	Х	Х	Х	Х	
Secondary				Х					
Tertiary				Х			Х		
Continuous	Х	X	X						

Table 1. Site type categories and the data collected for each category.

^a Automated stationary probe paired with Baro TROLL in order to measure water depth.

^b Automated stationary probe paired with Level TROLL in order to correct measured water depth. Only one Baro TROLL deployed for depth calibration of Level TROLLs; deployed at Middle site.

^c Includes Temperature and Conductivity U26-001 data loggers and dissolved oxygen sensors.

^d Vertical profile field measurements of water temperature (°C), specific conductivity (μ S/cm), salinity (psu), dissolved oxygen (% saturation and mg/L), pH, total depth (m) and turbidity (NTU).

^e Nitrate and nitrite nitrogen (mg/L-N), total Kjehldahl nitrogen (TKN; mg/L-N), total phosphorus (total P; mg/L-P), total suspended solids (TSS; mg/L), ammonia, and chlorophyll-a.

^f BT = Beam Trawl, OT = Otter Trawl, ZP = Zooplankton Trawl.

^{*}Conducted only at river sites.

Fieldwork

Fieldwork for the current study commenced on August 3rd, 2018, and officially concluded on December 31st, 2019. As the current study was meant to fill the gap in data between seasons, field sampling for water quality profiles and nekton communities was concentrated during the summer months with at least one sampling event included during spring and winter (Table 2). The primary objective was to examine and record the effects of a wide range of flow tiers during the summer season at the sites previously monitored during 2014-2017.

Hydrology

Daily freshwater inflow data was collected from the United States Geological

Survey (USGS) Gage #08116650 located in the upper Brazos River near Rosharon, TX.

Data downloaded from this gage included quarter-hourly, daily mean, monthly mean, and

annual mean discharge (cfs) (Table 6). Mean daily discharge was the primary form of discharge data used in the final analysis. However, annual and monthly mean discharge were still utilized to visualize long-term trends in flow on different scales. The discharge data on the quarter-hourly scale- also referred to as continuous or instantaneous discharge- was used in order to compare its strength as a predictor of river discharge in the lower Brazos River to the daily average discharge.

Estimates of river discharge in the lower Brazos were performed at site B42 during each sample date since 2014, and were measured using a Sontek River Surveyor S5/M9 Acoustic Doppler Current Profiler (ADCP) (Sontek 2013). This involved attaching the ADCP to a floating hydroboard and towing it across the river roughly perpendicular to the flow multiple times to estimate the water velocity field and net river discharge at the point of measurement (Mueller et al. 2009; Sontek 2013; TCEQ 2012).

Each sample event was categorized by season and flow tier based on the currently adopted environmental flow standards for the lower Brazos River (TCEQ 2014). The assignment of flow tier for any day begins with determining the season. Once the season has been determined, a weighted Palmer Hydrological Drought Index (PHDI) is calculated from the individual PHDI values for the various climatic divisions of Texas, and the geographic weight assigned to each individual PHDI is based on where the USGS gage is located- in this case the lower basin (TCEQ 2014). The PHDI values used in the calculation are from the last month of the previous season and are available online at the Texas Water Development Board (TWDB) Water for Texas website (Table 3; Table 6). Once the weighted PHDI has been calculated, the value is used to determine the hydrological condition. The final step to determining flow tier is based on the mean daily discharge of the sample day (Table 3). Any flow value between 430 (cfs) and the base flow value for the corresponding season and hydrological condition is classified as

subsistence. A flow tier is classified as a base flow when it exceeds the listed value for the corresponding season and flow tier. In order to meet the criteria for a pulse flow, the mean daily discharge value in question must be higher than the listed value for the corresponding season and hydrological condition, and it must have remained higher than the listed flow value for a minimum duration of the listed number of days previously. Since 2012, EIH has conducted a total of 39 sample events in the Brazos estuary, encompassing every season, and every possible hydrological condition and flow tier defined by TCEQ (Table 3).

Table 2. Sampling history of the Brazos estuary by EIH with the corresponding TCEQ flow tiers for each sample date and which studies the data collected was first used for (TCEQ 2014). Sample events 21 and 22 were independent surveys conducted by EIH; nekton sampling did not occur during sample event 22.

Sample Event	Sample Date	Season Flow Tier Daily Average Discharge (cfs)		Daily Average	Historical Research
		XX7	D. D.		() (11,, 201 (4)
1	01/18/2012	· · · · · · · · · · · · · · · · · · ·		1280	(Miller 2014)
2 3			Dry-Base	7470	
	03/12/2012	Spring	Dry-1ps	11500	
4	04/11/2012	Spring	Dry-1ps	10400	
5	05/08/2012	Spring	Dry-Subsistence	1390	
6	06/12/2012	Spring	Dry-Subsistence	304	
7	07/10/2012	Summer	Dry-Subsistence	380	
8	08/14/2012	Summer	Dry-Subsistence	475	
9	09/11/2012	Summer	Dry-Subsistence	710	
10	10/16/2012	Summer	Dry-Subsistence	920	
11	11/13/2012	Winter	Dry-Subsistence	275	
12	12/13/2012	Winter	Dry-Subsistence	350	
13	11/11/2014	Winter	Average-Subsistence	1160	(Bonner et al. 2015)
14	12/9/2014	Winter	Average-Subsistence	1050	
15	1/6/2015	Winter	Average-Base	4230	
16	2/4/2015	Winter	Average-Base	5740	
17	2/18/2015	Winter	Average-Subsistence	2090	
18	4/1/2015	Spring	Average-3ps	7080	
19	4/29/2015	Spring	Average-3ps	13100	
20	5/6/2015	Spring	Average-3ps	10500	
21	8/12/2015	Summer	Wet-2ps	6120	(Bonner et al. 2017)
22	8/25/2015	Summer	Wet-Base	4550	(Bonner et al. 2017)
23	12/1/2016	Winter	Wet-Subsistence	3250	(Bonner et al. 2017)
24	12/20/2016	Winter	Wet-Subsistence	3670	
25	1/31/2017	Winter	Wet-Base	9400	
26	3/15/2017	Spring	Wet-Base	6040	
27	5/1/2017	Spring	Wet-Base	9750	
28	5/24/2017	Spring	Wet-Subsistence	3110	
29	6/27/2017	Spring	Wet-Base	5720	
30	7/31/2017	Summer	Average-Base	1810	
31	9/20/2017	Summer	Average-3ps	5950	
32	10/18/2017	Summer	Average-3ps	3490	
33	09/27/2018	Summer	Average-Subsistence	1400	Current
34	03/12/2019	Spring	Wet-Base	6100	
35	07/11/2019	Summer	Wet-2ps	8120	
36	07/31/2019	Summer	Wet-Base	4070	
37	09/05/2019	Summer	Wet-Subsistence	2020	
38	10/17/2019	Summer	Wet-Subsistence	944	
39	12/05/2019	Winter	Average-Subsistence	836	

Table 3. Environmental flow standards for the Brazos River based on mean daily discharge (cfs) at USGS Gage #08116650 near Rosharon, TX (TCEQ 2014). Available online at: https://www.tceq.texas.gov/assets/public/legal/rules/rules/pdflib/298g.pdf.

r							
					Dry	Average	Wet
					Hydrological	Hydrological	Hydrological
				Base	Conditions	Conditions	Conditions
		Subsistence	Hydrological	Flow	Pulse(s) per	Pulse(s) per	Pulse(s) per
Season	Months	Flow (cfs ^a)	Conditions	(cfs)	Season (ps)	Season (ps)	Season (ps)
					Pulse(s): 1	Pulse(s): 3	Pulse(s): 2
			Dry	1140	Qp ^b : 9090	Qp: 9090	Qp: 13600
			DIY	1110	Volume:	Volume:	Volume:
Winter	Nov-	420		•	94700 af ^c	94700 af	168000 af
Winter	Feb	430	Average	2090	Duration ^d :	Duration: 12	Duration: 16
					12		
			Wet	4700			
					Pulse(s): 1	Pulse(s): 3	Pulse(s): 2
			Dry	1250	Qp: 6580	Qp: 6580	Qp: 14200
			Diy	1250	Volume:	Volume:	Volume:
C	Mar-	420			58500 af	58500 af	184000 af
Spring	Jun	430	Average	2570	Duration: 10	Duration: 10	Duration: 18
			Wet	4740			
					Pulse(s): 1	Pulse(s): 3	Pulse(s): 2
			Dry	030			
				950	Volume:	Volume:	Volume:
Summer	Jul-Oct	430			58500 af	14900 af	39100 af
		ļ	Average	1420	Duration: 10	Duration: 6	Duration: 9
			Wet	2630			
Summer	Jul-Oct	430	Dry Average	930 1420	58500 af	14900 af	Qp: 4980 Volume: 39100 af

Weighted Palmer Hydrological Drought Index (PHDI) = \sum (geographic weight * climatic division PHDI value from last month of previous season) = (0.619 * North Central PHDI) + (0.147*East Texas PHDI) + (0.057*Edwards Plateau PHDI) + (0.132 * South Central PHDI) + (0.045* Upper Coast PHDI).

Hydrological Condition Assessment for Lower Basin Dry = Weighted PHDI < -1.73 Average = $-1.73 \le$ Weighted PHDI ≤ 2.13 Wet = Weighted PHDI > 2.13

Data Source: waterdatafortexas.org/drought/phdi/monthly?time=2018-06

^a cfs = cubic feet per second

- ^b Qp = Flow (cfs)
- ^c af = acre-feet

^d Duration = days

Water Quality

Continuous

The continuous monitoring sites were equipped with temperature and conductivity Onset U26-001 HOBO data loggers and dissolved oxygen sensors. The conductivity loggers measured conductivity (μ S/cm), and temperature (°C) while the dissolved oxygen logger measured dissolved oxygen concentration [DO (mg/L)]. Both types of loggers measured the corresponding data every fifteen minutes until their retrieval. These data loggers were checked approximately once a month in order to ensure the battery life was still good, check for fouling, damage, and proper data logging. Prior to retrieval and launching of the data loggers, a YSI ProDSS sonde was used to take side-by-side measurements of salinity (psu), specific conductivity (μ S/cm), conductivity (μ S/cm), DO (mg/L), temperature (°C), depth of the loggers (m), and total depth (m). These side-by-side measurements would later be used to validate and correct the raw HOBO data in HOBOware (v 3.7.22). Prior to and after sampling, the sonde was calibrated according to TCEQ Surface Water Quality Monitoring quality assurance standards (TCEQ 2012). Once the data was downloaded and the HOBO loggers were reactivated, they would be given a protective layer of plastic wrapping, housed in polyvinyl chloride (PVC) tubes, and secured to a wood piling using a metal cable and lock (Figure 2).

After the data was downloaded and the loggers were redeployed, the conductivity data was converted to salinity using HOBOware Conductivity Assistant and the side-by-side specific conductivity readings from the deploy and retrieval date in order to calibrate the salinity conversion. The converted salinity data would then be used to adjust the DO data using Dissolved Oxygen Assistant and the side-by-side DO readings. After each retrieval, the data would be scrutinized for any suspect readings such as severe

fluctuations or zero values that would indicate the loggers were not submerged or buried in sediment. These values were flagged and removed with final approval from EIH Associate Director Jenny Oakley, Ph.D.

Additionally, In-Situ model water depth probes (m)- Level TROLL 300- were deployed at all continuous sites while a barometric pressure probe (mm Hg)- Baro Trollwas deployed at the Middle site (Table 1; Table 5; Figure 1; Figure 2). The Level TROLLs were deployed next to the HOBO loggers in contact with the river bottom, while the Baro TROLL was deployed on a light post where it could not be submerged by water (Figure 2). Both types of probes were given a protective layer of plastic wrapping to help prevent fouling and growth and were also housed in a hollow tube made of PVC. The PVC housing was secured to a wood piling using a screw near the top of the housing, and plastic zip ties near the bottom. To decrease the odds of theft, a metal cable was secured through the top of the probe and looped through an eye ring drilled into the same piling.

Like the HOBO loggers, the TROLL probes logged their corresponding data every fifteen minutes and were checked approximately once per month to download data and ensure the equipment was still functioning properly. The data from both TROLL probes was downloaded via the software program Win-Situ 5. In order to ensure the accuracy of relative depth readings by the Level TROLL 300, they required correction in the software package Win-Situ Baro-Merge (v 1.4.3) using synchronized barometric pressure readings from the Baro TROLL (In-Situ 2013).

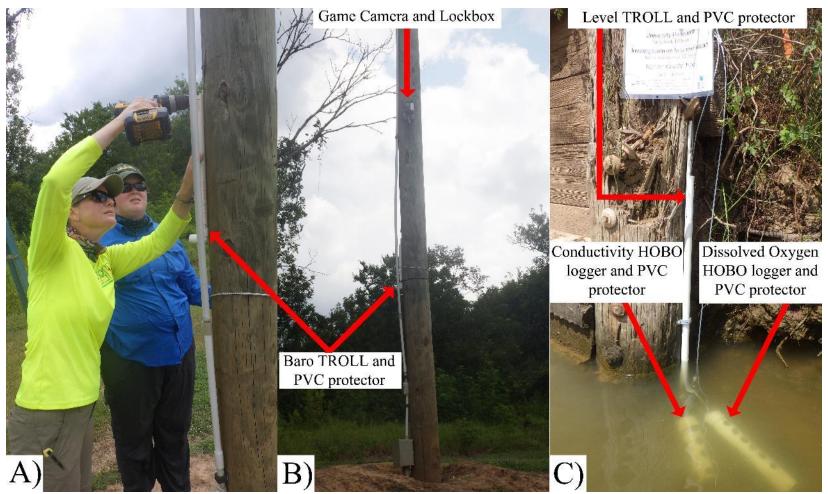


Figure 2. Continuous monitoring gear setup. A) Jenny Oakley and Natasha Zarnstorff securing Baro TROLL and its PVC protector to light post at Middle Site. B) Baro TROLL and game camera deployed at Middle site. C) HOBO loggers and Level TROLL in their PVC protectors deployed at Upper site.

A new addition to the protocol at the continuous sites was the deployment of Ltl Acorn trail cameras at the Lower and Middle Site. These cameras were drilled to a nearby tree or wooden pole and secured in a lockbox approximately four meters off the ground in order to actively photograph the changes in water levels for the duration of the study (Figure 2). The purpose of this was to provide additional evidence for the correlation- or lack of- between the quarter-hourly and daily average discharge at the Rosharon gage and the relative water depth at the continuous sites. The distance between the Rosharon gage and the TCEQ boundary is over 100 kilometers, so there is reason to question the accuracy of the instantaneous measurements as a predictor of river discharge in the estuary at the same time. Each camera was set to take a photograph once every hour with a timestamp, and each month had the pictures downloaded from the SD card before redeployment. During the duration of the camera deployment, the Rosharon gage was carefully monitored in order to identify days where pulse events occurred. These are classified as a rapid increase in water levels and river discharge over a short period of time- several hours to a few days. These types of events were needed for crossreferencing the photos with instantaneous data from USGS because it was only during events such as these when a rapid influx of water could offset any changes in water height due to tidal cycles.

Profile

Vertical profiles of the Brazos River water quality were collected using a 21' JH Performance during each sampling event at the thalweg of all sample sites except the continuous sites (Table 1; Table 5). Variables measured included water temperature (°C), specific conductivity (μ S/cm), salinity (psu), DO (% saturation and mg/L), pH, turbidity (nephelometric turbidity unit [NTU]), and water depth (m). All the previously listed variables were recorded using a YSI 600XLM multiprobe sonde with a cable range of ten

meters (YSI, Inc., of Yellow Springs, Ohio). A two-pound weight was attached to the sonde during measurements in order to minimize drag due to the flow of the river. Prior to and after sampling, the sonde was calibrated according to TCEQ Surface Water Quality Monitoring quality assurance standards (TCEQ 2012).

Each water-quality variable was measured at the surface (0.3 m), 25% of total depth, 50% of total depth, 75% of total depth, and the bottom (0.3 m above the bottom substrate), along with the corresponding sample depth (meters) recorded for each depth percentage group. In addition, mid-channel total depth and Secchi disk transparency (depth: meters) were recorded at each site- except during 2014-2015 where Secchi disk transparency was only recorded at the primary sites (Bonner et al. 2015). The water quality profile for each site was taken at the thalweg in order to ensure the most representative profile- specifically at the bottom and an accurate mid-channel total depth. Vertical water quality profiles were also conducted at nine sites in the GOM during two collection dates using the same protocols (Table 1;Table 5). Tide data taken from NOAA tide station 8772447 at Freeport, TX to determine tide stage and tidal height (ft) at the time the water quality profile was taken for each site (Table 6).

Surface Water Grab

Surface water grab samples were collected at all primary sites during each sampling event following protocol outlined in TCEQ (2012) (Table 1;Table 5). These samples were then submitted to the Eastex Environmental Laboratories of Houston, Texas and subjected to laboratory analysis. The chemical parameters of interest for analysis include Nitrate and nitrite nitrogen (mg/L-N), total Kjehldahl nitrogen (TKN; mg/L-N), total phosphorus (total P; mg/L-P), total suspended solids (TSS; mg/L), ammonia, Total Organic Carbon (TOC) and chlorophyll-a. Additional surface water grab samples were collected at three GOM sites (Table 1). All water samples were collected

and stored in sterile, 1-Liter Nalgene bottles apart from the chlorophyll sample which was stored in a 4-Liter Nalgene bottle. The sample bottles were rinsed three times with water from the corresponding site before filling. Once the bottles had been filled, they were put on ice until they could be collected by Eastex. The results of these laboratory tests are reported in Appendix F but were not utilized in any of the analyses.

Nekton

The extensive summer monitoring period for estuarine nekton is due to the absence of appropriate monitoring during previous studies of the Brazos River and the higher probability for lower flow tiers and hypoxic water conditions. Certain documented species of nekton are proven to move between different sections of the river seasonally due to available food sources or for breeding purposes, which also necessitated the increase of samples representing the summer months (Day et al. 2012). Site B42 was omitted from nekton sampling events for the current study since previous studies revealed it consisted primarily of freshwater species (Bonner et al. 2017; Bonner et al. 2015; Miller 2014). The most recent nekton sampling occurred from B31 to B01 in order to be more selective of species that would be considered estuarine- species that utilize the estuary to complete at least one stage of their life cycle. Nekton sampling occurred during the same day as the water quality profiles except during 2014-2015 when nekton sampling prior to August 12th, 2015, occurred the day proceeding the day the water quality profile was taken at each site. However, the need for paired water quality data and nekton collections was anticipated during 2014-2015, and as a result, additional water quality profiles were taken on the day of the nekton sampling at the surface and the bottom (Bonner et al. 2015). Beginning in 2016, water quality profiles and nekton collections occurred on the same day (Bonner et al. 2017).

Beam trawling with a (15'x5') net was conducted at all primary sites (B01, B10, B22, B31 and B42) for a profiling of the pelagic and juvenile nekton. Shoreline nekton were collected at all primary sites using a modified 6.4 mm mesh Renfro beam trawl manufactured by Sea-Gear Corporation of Melbourne, Florida (Renfro 1962). Three replicate hauls were pulled parallel to shore for 15.2 m/haul on one bank per site- with the sampling bank being alternated during each sampling event and at each site (Figure 3). Additionally, Otter trawls (3.1 m wide, 38.2mm stretch mesh, 6.1 mm net fitted within cod end) were towed for approximately 5-minutes per replicate at each primary site using a 22' Twin Vee Cat to sample bottom-dwelling nekton. A total of three replicate tows were made at each site for each sample date- except B42 during the current study. Trawls were performed facing upriver and aligned with the thalweg at an average speed of 2.5 knots and equipped with a 30-m tow line. In instances where snags interfered with the completion of a trawling replicate, catches were released, and the trawl was redeployed upstream of the snags. Multiple nets were brought during sampling events for quick deployment in the event a trawl got snagged and could not be freed in a timely manner. Otter trawls in the GOM were pulled parallel to the coastline using a 25' Boston Whaler Guardian. Of the 369 replicate otter trawls performed in the Brazos estuary since 2014, only four were not completed- all of which occurred on October 17th, 2019- due to snags snaring all functional nets and preventing retrieval before sunset. These included the third replicate at B22, and all three replicates of B31 on October 17th, 2019.

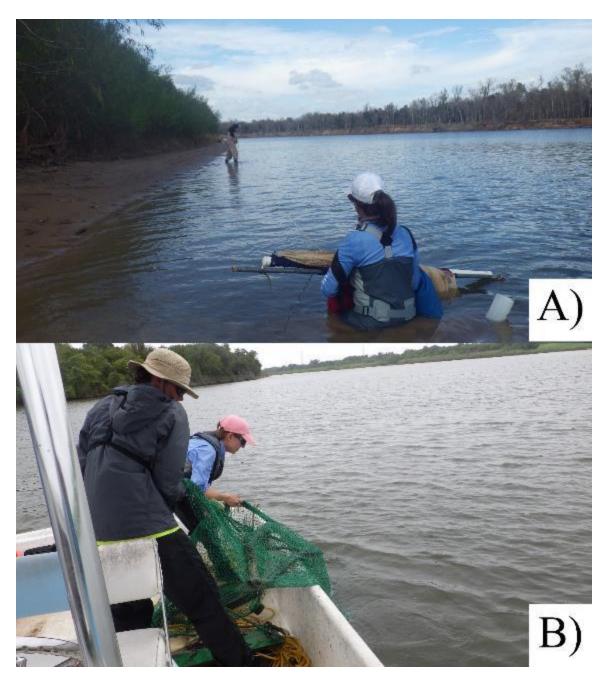


Figure 3. Nekton sampling gear used during the study. A) Beam trawl deployment on right bank at site B31. B) Otter trawl retrieval at site B10.

Each replicate for both sample methods was timed using a stopwatch and recorded in decimal minutes in order to calculate catch-per-unit-effort (CPUE). All nekton- finfish and invertebrates capable of independently swimming against water currents- collected during sampling events were identified to the lowest possible taxonomic level and counted. The first five individuals of each species captured in each replicate were measured using fish scales. For fish, the standard length (mm)- from the tip of the snout to the caudal peduncle- was taken. For crabs, the maximum width of the carapace was the standard measurement. For shrimp, the standard length would measure from the tip of the rostrum to the end of the telson. The only cephalopod captured during the study was the Atlantic Brief Squid (*Lolliguncula brevis*), which was measured from the tip of the mantle to the tip of the beak. During the otter trawls, photo vouchers were taken for each species captured. These photo vouchers included a scale for reference of size, the sample date, the sample site it was collected at, and the name of the species (Figure 61).

Any specimens that were not identified in the field were anesthetized with MS-222, euthanized and preserved in 10% formalin, and brought back to the EIH lab for subsequent analysis. All specimens were reported with scientific names and common names with the use of taxonomic keys. The common and scientific names for all species reported in this document reflect the most current nomenclature and taxonomic classification used by the American Fisheries Society (Angel et al. 2005; Page et al. 2013). Nekton taxa were categorized based on site collected, date collected, gear type and replicate sample number. Nekton collections were classified as the sum data of all three replicate hauls for each sample method at each site on the date they were collected.

Zooplankton trawls were conducted using a 1.5 m x 0.5 m, $100 \mu \text{m}$ mesh plankton net. Each replicate was towed for approximately three minutes, and samples were stored in 50-mL Nalgene bottles. Filtering of the samples had not been conducted in a timely manner as the previous years had been, so no new zooplankton catch data was available for analysis, and therefore excluded from the results.

Data Analysis

Hydrology

The daily average discharge from the USGS gage was the primary form of hydrological data used in the assessment of variation in river discharge and the relationships with biological and physiochemical variables. However, monthly average, and annual average discharge were also used to test the extensiveness of stream flow variation on different time scales. Graphs summarizing each discharge statistic during the sample period and throughout the active deployment of USGS gage #08116650- April 1st, 1967, to the present day- were plotted using the graphing software Sigmaplot 13.

The daily average discharge was also used to compute a mean and median daily average discharge value for the entire time the Rosharon gage has been active. The purpose of this was to create a criteria for extreme flow or flood stage conditions since TCEQ does not provide any official criteria for drought or overbank conditions (TCEQ 2014). Graphs were constructed using R and R Studio (v 4.0.3 and 1.4.1103 respectively) in order to calculate how many days each year the lower Brazos River exhibits extreme flow. In this case, the standard was the same for determining outliers using the empirical rule- taking twice the value of the standard deviation of the data and adding it to the mean of the data. These outliers were then plotted in order to determine how the frequency of extreme events has changed throughout time.

In order to test for significant differences in stream flow, each flow reading was categorized based on season, month, and year. The criteria for the seasons are based on TCEQ standards and include November to February for winter, March to June for spring, and July to October for summer (Table 2; Table 3). The nonparametric Kruskal-Wallis one-way analysis of variance (ANOVA) was executed in Minitab 19 in order to determine significant differences in median daily average discharge between sample

years, months and seasons. The Kruskal-Wallis test was considered a more appropriate test than the parametric one-way ANOVA primarily because the measure of center is the median rather than the mean (Gobo et al. 2006). The lower Brazos River experiences periods of high flow throughout most of the spring and most of the winter quite regularly, and yet the average annual discharge is consistently reported below 10,000 cfs (NOAA 1990; USGS 2005; USGS 2008). The distribution of the data from the USGS gage on any time scale is heavily skewed to the left, therefore the median is more useful as the center of the data (Gobo et al. 2006). If the results of the Kruskal-Wallis test were statistically significant, then Dunn's multiple comparisons test was used to conduct pairwise comparisons between groups (Dinno 2015; Dunn 1964). In order to control the family-wise error rate, a Bonferroni-adjusted p-value was used for each pairwise comparison. This value was calculated by dividing the alpha (α) of the original Kruskal-Wallis test by the number of pairwise comparisons (Dinno 2015). However, setting the (α) to 0.05- as is the default in most statistical tests- would yield different significance levels for the medians of different grouping variables when using the Bonferroni-adjusted p-value to determine statistical significance. As a result, each time the Kruskal-Wallis and Dunn's multiple comparisons tests were run between different grouping variables, they would be given a family (α) that would yield identical Bonferroni-adjusted p-values of 0.006, which would yield 95.009% confidence intervals of the medians for all group categories.

Using Minitab 19, linear regression analysis was performed between the field discharge measured by the hydroboard-mounted ADCP and the USGS discharge data. The primary purpose of this test was to generate a predictive linear model and determine how accurate the USGS gage is at predicting discharge in the lower Brazos. Both the daily average discharge and the continuous discharge from the USGS gage were

subjected to linear regression analysis with field discharge in order to determine the metric with a stronger correlation to field discharge. It was hypothesized that daily average discharge would be a more robust predictor of downstream flow- particularly during pulse events when measurements at Rosharon could take several hours to days to be detected in the estuary (Figure 59; Figure 60). The coefficient of determination (\mathbb{R}^2) and standard deviation (S) were both used to judge the best predictive model of discharge in the lower Brazos.

Water Quality

Continuous

The continuous data utilized for analysis spanned the entire data collection histories of Bonner et al. (2015), Bonner et al. (2017), and the current study. The data acquired from the loggers at the continuous sites was imported into R and R Studio in order to use the data on the quarter-hourly scale to compute daily average values. Each daily average value was categorized by season in order to help visualize any existing seasonal trends. The daily average values of each variable would then be plotted against daily average discharge in order to determine the feasibility of using flow as a predictor for the variables measured- temperature, salinity, DO, and depth. The justification for using daily average values rather than the continuous measurements relates to the normal cycles of the day. All these variables are subject to diel cycles due to exposure by sunlight- temperature and DO- or tidal shifts- salinity and depth (Day et al. 2012). As a result, it would be difficult to associate any correlation between changes in discharge and changes in the water quality simply because they are expected to change throughout the course of a day. Daily mean values were expected to better reflect long-term seasonal changes as well as short-term changes due to changes in weather conditions and perhaps hydrology. Daily average values that did not utilize complete data from an entire day

were still included, as the amount of suspect data removed would have left many days without a fully complete 24 hours' worth of data.

Once again, these variables were subjected to linear regression analysis using Minitab 19. Salinity and depth underwent nonlinear regression with daily average discharge due to being strongly correlated with flow but not conforming to a linear model. Salinity was subjected to a Log₁₀-transformation to determine if a linear regression model would yield a better fit than using non-transformed data for nonlinear regression. Temperature and DO did not exhibit any discernible correlation with flow, so generating a predictive model for each relied on choosing more strongly correlated predictors. The predictor variable for temperature was Julian day- the number of days since the beginning of the Julian year- while temperature was used as the predictor for DO. The (R²) and (S) were used to judge the strength of the linear regression models while the lack-of-fit test and (S) were used to determine the predictive strength of the nonlinear regression models. The statistical software Past 4.0.3 was used in conjunction with Minitab in order to assist in choosing the best nonlinear model and provide parameter estimates in Minitab.

Profile

Water quality variables were summarized in Appendix E for surface and bottom measurements by mean ± 1 standard error (SE), maximum and minimum for each site, season, and flow tier. A two-way ANOVA was performed in Minitab 19 to test for significant differences in mean depth interpolated (surface, 25% depth, middle, 75% depth, and bottom) readings of temperature, salinity, DO, pH, turbidity, total depth, and Secchi disk transparency between sites and flow tiers. A two-way ANOVA is used to determine how the mean of a continuous variable varies by two independent grouping variables individually and in an interactive model. Although the ANOVA assumptions of

samples being drawn from a normally distributed population and each population having a common variance were violated, the sample sizes for each site and flow tier were considered large enough to use this statistical test rather than the nonparametric alternative. This choice was also made in order to make a direct comparison to previous reports that performed the same test with smaller data sets and either provide evidence to refute or support those original conclusions (Bonner et al. 2017; Bonner et al. 2015). A significance level of ($\alpha = 0.05$) was used in order to test for an interaction effect between site and flow tier for each variable of interest. If no interaction effect was detected, but significant differences were detected between sites and/or flow tiers, then a post-hoc multiple comparison test was used to identify significant differences between sites and/or flow tiers. Tukey's HSD multiple comparison test was the post hoc test used for pairwise comparisons among sites and/or flow tiers when significant differences were detected. If an interaction effect was significant ($p \le 0.05$), one-way ANOVAs and corresponding Tukey's HSD post-hoc tests were performed in R and R Studio in order to detect significant differences between sites during each flow tiers and significant differences between flow tiers at each site.

Multivariate analysis of water quality variables between seasons and flow tiers was performed in PRIMER 7 using the Principal Component Analysis (Clarke and Gorley 2015). Prior to performing PCA, all water quality data was normalized in order to ensure all variables had equal weighting. The variables used in the multivariate analysis included temperature, DO, salinity, and daily average discharge. The variables excluded from the multivariate analysis included pH, turbidity, and total depth. The decision to exclude pH stems from the fact that it uses a logarithmic scale, so even a normalization transformation was unlikely to give pH equal weighting during PCA. Turbidity was excluded because previous studies indicated that it exhibited strong correlations with

most of the water quality variables (Miller 2014). One of the primary assumptions of PCA is that the variables being modeled are independent of one another and exhibit little or no correlation (Clarke and Gorley 2015). Due to both current and previous studies providing evidence that turbidity exhibits correlations with nearly all water variables, it was not used for characterizing water chemistry between seasons and flow tiers (Miller 2014). Total depth was also excluded because it is directly correlated with flow, and so including it in the multivariate analysis alongside daily average discharge was unnecessary. However, daily average discharge was substituted for total depth when performing PCA between the sample sites in the GOM. The results calculated were eigenvalues for each principal component (PC) generated, which would then be used to calculate what percent variation each principal component explained the variation between samples. Eigenvectors for each principal component would then show the coefficients in the linear combinations of variables composing the PCs. The sample data would then be plotted on a graph using the two PCs explaining the greatest amount of variation as the axes in order to visualize what grouping variables were driving the variation between samples.

Nekton

Total nekton abundance (N), species richness, catch per unit effort (CPUE), Shannon-Wiener Diversity, Shannon Evenness, and Margalef Richness were calculated for each nekton collection. The effort used in calculating CPUE was total decimal minutes rather than the total number of replicates. Even though each gear type used during sampling was used for exactly three replicates at each site on the date of sampling, the duration of each haul was not identical every time, and therefore may not be the most representative metric for effort. The values used for calculating Shannon-Wiener and

Shannon evenness were the actual abundances of each species captured in the collections rather than CPUE for each species (Swanson 2019).

Pearson correlation analysis was performed in R and R Studio in order to test for significance in correlation between surface water quality, bottom water quality, and all nekton community data for each gear type. If the correlation between any two variables was significant, it was graphed on a correlation plot with a color gradient scale based on the numeric value of the correlation coefficient (+/-). A complete summary of all correlation coefficients and the p-value of each pairwise comparison between variables is provided in Appendix J (Table 71; Table 72; Table 73; Table 74). The primary purpose of the correlation analysis was to determine whether surface or bottom water quality data would be appropriate in the use of any predictive models for nekton data. This was especially important for nekton collected by beam trawl since water quality measurements for each sampling event were taken at shore instead of the thalweg. In addition, since the water column being sampled by the beam trawl is very shallow, the entire water column can be sampled as opposed to the otter trawl which targets nekton dwelling near the bottom (Renfro 1962). This creates uncertainty in determining which part of the water column exhibits the strongest correlation with nekton communities.

The Similarity Percentages (SIMPER) test was performed in PRIMER 7 in order to calculate percent similarity between sites, seasons, and flow tiers based on species composition. The SIMPER test performs pairwise comparisons between all samples in order to determine the contribution of each species to the overall Bray-Curtis similarity within each grouping variable class, as well as the contribution of each species to the overall Bray-Curtis dissimilarity between each grouping variable class (Clarke et al. 2014). The results calculated by the SIMPER test detected species that contributed a minimum of 70% average similarity between collections at each site, season, and flow

tier. It also listed species that contributed a minimum of 70% average dissimilarity between pairwise comparisons of sites, seasons, and flow tiers.

Nonmetric Multidimensional Scaling (nMDS) was implemented in PRIMER 7 to visualize patterns between nekton collections. The nMDS plot ranks each sample based on similarity to one another using a Bray-Curtis resemblance matrix in order to plot these multidimensional relationships in a two-dimensional space (Clarke 1993; Clarke and Gorley 2015). Prior to constructing the resemblance matrix and nMDS plot, all nekton abundances were transformed with the function $Log_{10}(1 + x)$. A stress test was also conducted simultaneously in order to validate the accuracy of the multivariate distances depicted. In this case, a stress level of (< 0.25) would be considered satisfactory in accepting the nMDS plots as trustworthy. A stress statistic value closer to zero indicated a higher likelihood that the rank similarities plotted were not due to chance (Clarke et al. 2014). Only collections using the otter trawl were plotted using nMDS because even with sum catch of all three replicates, the beam trawl still had several collections with zero catch. Zero catch collections plotted using nMDS inflate the dissimilarity in the resemblance matrix and make it more difficult to understand the relationships between collections with catch data. Only one otter trawl collection had to be excluded from the nMDs plots due to zero catch- B22 on September 27th, 2018- and another two were excluded because the collections were incomplete- B22 and B31 on October 17th, 2019.

The one-way Analysis of Similarities (ANOSIM) test was performed in tandem with nMDS in PRIMER 7 in order to test for significant differences in nekton communities between the groups of interest- site, season, and flow tier. The p-values of the ANOSIM test would then be used to determine if nekton collections were significantly different between groups. Another metric used to judge the relationship between groups would be the Spearman's rho (R) values. Rho values range from -1 to 1

in order to determine the strength of the similarity between two variables. A value closer to -1 or 1 indicates that the difference of mean Spearman's ranks between the groups is higher than the differences of mean ranks within the groups being compared. On the other hand, a value closer to zero is indicative of the mean ranks within groups and between groups being closer in value, and therefore exhibit fewer dissimilarities. The only collections that were excluded from the SIMPER, nMDS and ANOSIM tests were the incomplete otter trawl collections performed on 10/17/2019. Zero catch collections were considered complete collections and therefore included in the statistical analyses-except for the nMDS plots.

Cluster analysis was also conducted in PRIMER 7 by using a Bray-Curtis similarity resemblance matrix in order to create a dendrogram of collections based on similarity. A Similarity Profile (SIMPROF) test was also executed in order to overlay significant groupings between collections in the dendrogram. Cluster analysis was performed only on the Gulf sites because this test is not particularly useful in determining significant groups if the sample size is too large (Clarke et al. 2014).

The final portion of data analysis concerning the nekton was calculating significant differences between the calculated nekton community metrics- (N), species richness, CPUE, Shannon Diversity (H'), Shannon Evenness (J'), and Margalef Richness- for each collection method between sites, seasons, and flow tiers. The purpose of this was to determine which grouping variables best explained variation in nekton communities using a wide range of variables that are used to quantify diversity. Since the nekton data did not meet the assumptions for normality- due in part to zero catch collections- the Kruskal-Wallis test was selected for calculating significant differences. These tests were run using Minitab 19, and Dunn's multiple comparisons test was once again selected as the post-hoc test in the event the Kruskal-Wallis test detected a

significant difference (Dunn 1964). The significance level (α) was adjusted according to the grouping variable being tested in order to ensure each post-hoc test used the same Bonferroni-adjusted p-value for determining significant differences in pairwise comparisons.

RESULTS:

Hydrology

Sampling History

The extensive field work conducted by EIH on the lower Brazos River has spanned from scouting locations in late 2011 to the sampling of the GOM in December 2019. Within that time frame, the estuary has experienced conditions ranging from considerable aridity to storm events like Hurricane Harvey (Figure 4). The variation in flow is considerable even within a single year, but patterns are still present within the data. The spring season has greater frequencies of maximum continuous and daily average discharge values for any given sampling year, with the winter months trailing directly behind. The only year of sampling that did not have maximum continuous or daily average discharge value in spring or winter was in August 2017 when Hurricane Harvey made landfall (Van Oldenborgh et al. 2017). It was this event that also produced the highest recorded continuous and daily average discharge values on August 29th, 2017-133,000 and 121,000 cfs respectively.

The months with the greatest frequency of maximum continuous and daily average discharge were June and November. Another common trend in the discharge was a high frequency of minimum discharge values occurring during the summer months. The month with the highest frequency of minimum continuous and daily average discharge values was August. The lowest daily average discharge value recorded during the sampling history was July 7th, 2011, at 94.40 cfs. However, this value was estimated by USGS due to a lack of continuous data throughout much of the year. The lowest accepted values were recorded on July 7th, 2013, at -125.00 cfs for continuous, and 119.00 for daily average discharge.

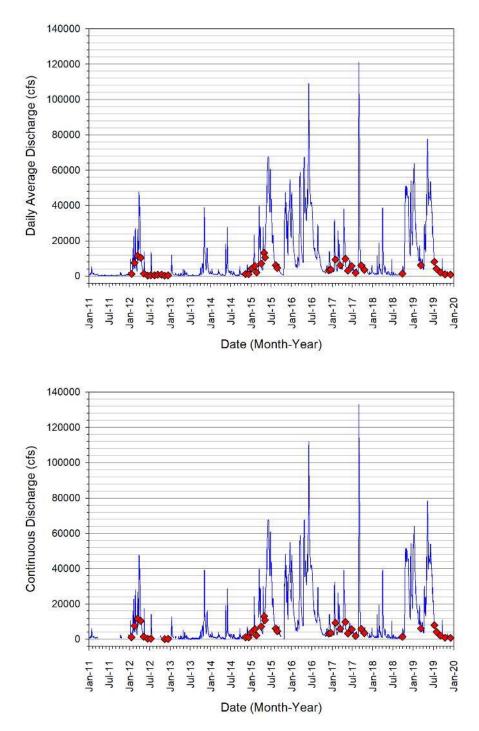


Figure 4. Hydrographs of daily average discharge (top) and continuous discharge (bottom) from USGS gage #08116650 from January 1, 2011, to December 31, 2019. Samples from current and previous studies with corresponding discharge values are denoted by (•) (Bonner et al. 2017; Bonner et al. 2015; Miller 2014).

The months of May and June consistently ranked high in monthly average discharge for every year since 2011, with many instances of the maximum monthly average discharge being recorded during those months. During the Miller study in 2012, the highest monthly average discharge was recorded in March at 18,570 cfs while the lowest occurred in November at 333.4 cfs. The maximum and minimum monthly average discharge values to be recorded during the Bonner et al. 2015 study were 33,970 cfs in May 2015 and 1720 cfs in November 2014. The maximum monthly average discharge during 2016 was recorded in June at 59,820 cfs while the minimum was recorded in October at 2,693 cfs. During 2017, the month with the greatest monthly average discharge was September at 25,850 cfs. The month of December in 2017 had the lowest monthly average discharge at 2,342 cfs. The year 2018 did not see any significant increases in flow until the middle of October and reached its maximum monthly average discharge during November at 39.630 cfs. The minimum monthly average discharge during 2018 was recorded in August at 696.2 cfs. The highest monthly average discharge in 2019 occurred in May at 51,280 cfs while the minimum monthly average discharge was during the month of December at 884.1 cfs.

Since the activation of the USGS gage near Rosharon, TX, the average annual discharge has only been calculated above 15,000 cfs four times- two of which were recorded within the sampling history of the lower Brazos by EIH. These years include 1992 at 26,990 cfs, 2007 at 20,800 cfs, 2015 at 18,900 cfs, and 2016 at 21,080 cfs. The only year that had an annual average discharge below 1,000 cfs was during 2011 at 637.4 cfs. The years of 1967, and 1980 to 1984 are not shown with values due to the lack of complete data available for calculation.

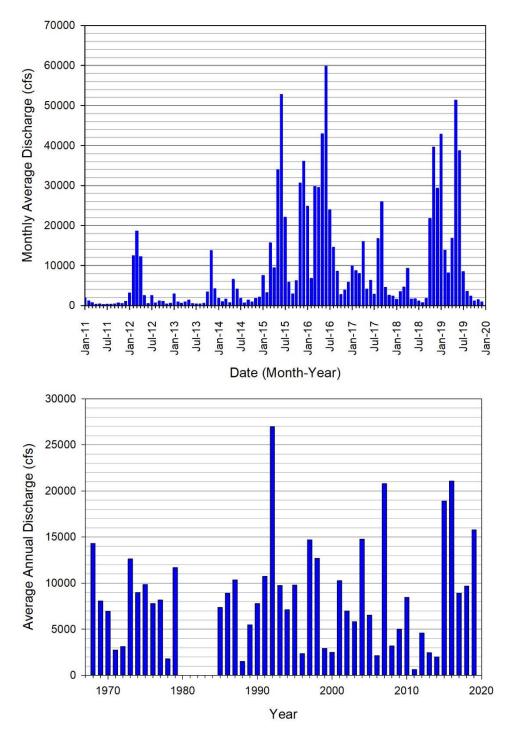


Figure 5. Hydrographs of monthly average discharge measured at USGS gage #08116650 from January 1, 2011, to December 31, 2019 (Top) and average annual discharge (cfs) of the calendar year from 1968 to 2019 using complete data (Bottom).

Extreme Event Analysis

Although the TCEQ standards provide useful criteria for defining flow tiers on short-term time scales, describing the "normal" range of river discharge on an annual scale can be very subjective. With daily average discharge data available since 1967, there is ample data to make informed conclusions about deviations from the normal trends of flow in the lower Brazos. A dot plot of all daily average discharge values recorded since April 1st, 1967, to December 31st, 2019, was constructed using R and R Studio in order to create a criterion for extreme flow events (Figure 6). The mean daily average discharge of 8,394.02 cfs was plotted against the median daily average discharge of 3,190 cfs in order to visualize the disparity in the spread of data. The mean and standard deviation (σ) of 12,737.93 cfs were used to calculate a standard for classifying extreme flow events. This standard was calculated by adding twice the value of the standard deviation to the mean daily average discharge, resulting in a value of 33,869.90 cfs.

Any daily average discharge value that was recorded above the outlier standard of 33,869.90 cfs was designated as extreme so that a histogram of the extreme flow could be generated (Figure 6). The purpose of this was to provide a visual representation of how frequently the lower Brazos experiences extreme flow, and if that trend has been increasing. The mean number of days in a year that experience over 33,869.90 cfs is 21.69 days while the median number of days is 13. Of the 53 years that had any daily average discharge data available- complete or otherwise- only 15 of those years were greater than the mean. Of those 15, six were within the last two decades- four of which took place during the EIH sampling history of the Brazos. There were also four years calculated to be outliers with more than 80.84 days of extreme discharge within the year: 1992, 2007, 2015, and 2016.

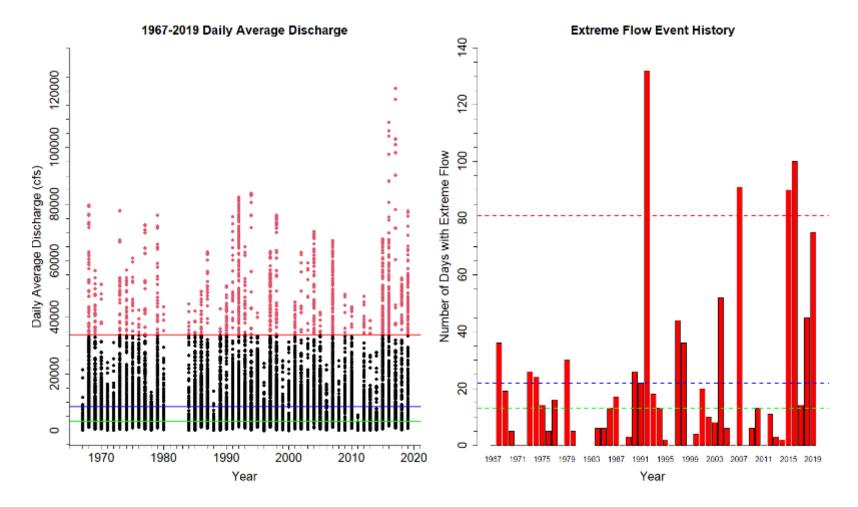


Figure 6. Dot plot of daily average discharge from USGS gage #08116650 from 1967 to 2019 (Left), and histogram of extreme flow events from the same time period (Right). The green line represents the median, the blue line is the mean, and the red line is equal to the mean + 2σ .

Annual Variation

The nonparametric Kruskal-Wallis test was the primary form of analysis for determining significant differences in daily average discharge among different time scales. If significant differences between one or more of the medians was detected, Dunn's multiple comparisons test was performed post-hoc to determine which groups were significantly different. The family (α) for the Kruskal-Wallis test was chosen based on the number of comparisons between groups so that the resulting Bonferroni adjusted (α) for Dunn's multiple comparisons would always equal 0.006. This would yield 95.009% confidence intervals (CI) of the median daily average discharge.

Kruskal-Wallis tests were used to compare the variation between months throughout the entire sampling history of the USGS gage (1967-2019) and the sampling history conducted by EIH. Both scenarios revealed highly significant results (p < 0.001), and Dunn's multiple comparisons test was performed post-hoc (Figure 7). In both time periods, the month of August was the most significantly different from the other months and exhibited the least variation in daily average discharge. From 1967-2019, the month with the fewest number of statistically significant (p \leq 0.006) comparisons was January, while during 2011-2019 it was the month of June.

Kruskal-Wallis tests were also used to compare median daily average discharge between sampling years, and Dunn's multiple comparisons test revealed a stark divide between the two halves of the decade (Figure 8). Nearly all pairwise comparisons between the years 2011-2019 were significantly different ($p \le 0.006$). The median daily average discharge of 2018 was significantly different from all other years. The year 2014 had the fewest significantly different comparisons at six and was not significantly different from 2012 or 2013.

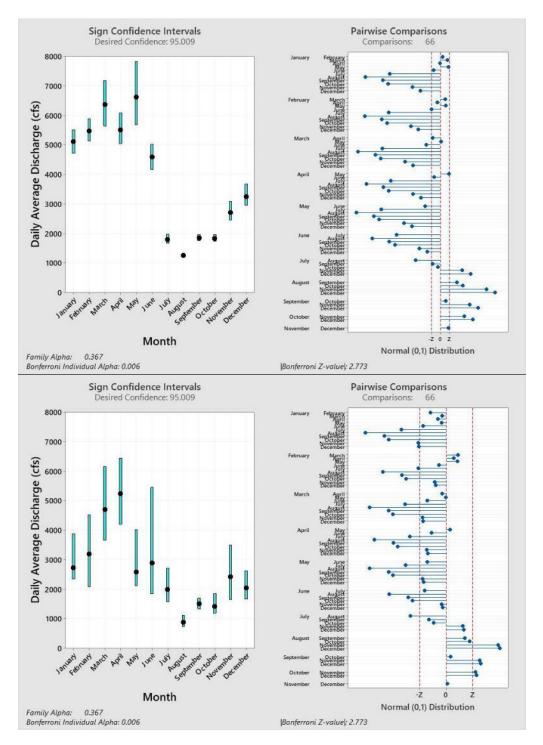


Figure 7. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each month during the years 1967-2019 (Top) and 2011-2019 (Bottom). Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between months ($p \le 0.006$).

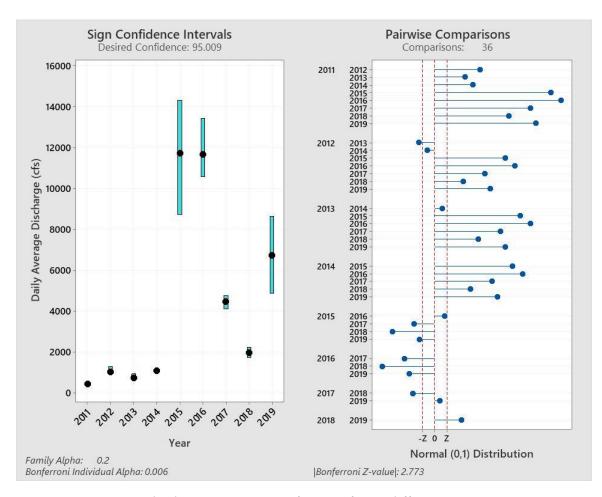


Figure 8. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year from 2011-2019. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between years ($p \le 0.006$).

Seasonal Variation

An analysis of the seasons was conducted using the same procedure. Dunn's multiple comparisons test of daily average discharge for the seasons from 1967-2019 revealed that all three seasons are significantly different from one another ($p \le 0.006$). However, in the case of 2011-2019, the spring and winter seasons were not significantly different from one another (p > 0.006) (Figure 9). In addition, each individual season was separately tested in order to determine the variation within each season during the

sampling history. The summer season experienced the lowest degree of variation in daily average discharge between years; Dunn's multiple comparisons test calculated 30 significantly different ($p \le 0.006$) pairwise comparisons out of 36 (Figure 10). In contrast, the winter season exhibited the greatest amount of variation in daily average discharge between sample years, as Dunn's multiple comparisons test calculated only 25 significantly different pairwise comparisons (Figure 11). This contradicted the results comparing each season, which suggested that the larger confidence interval of the spring season during 1967-2019 and 2011-2019 would mean that the spring season would exhibit more variation between sample years than the winter season. The spring season had a total of 29 significantly different pairings between years, and each individual year had at least six significantly different pairwise comparisons (Figure 12). The year 2018 had the least number of significantly different comparisons during the winter season, while 2017 had the least number of significantly different comparisons during the winter season (Figure 11). During the spring season, the years 2011, and 2017 were significantly different from all other years, while during the summer season, 2011, 2016, and 2018 were significantly different from all other years (Figure 10; Figure 12).

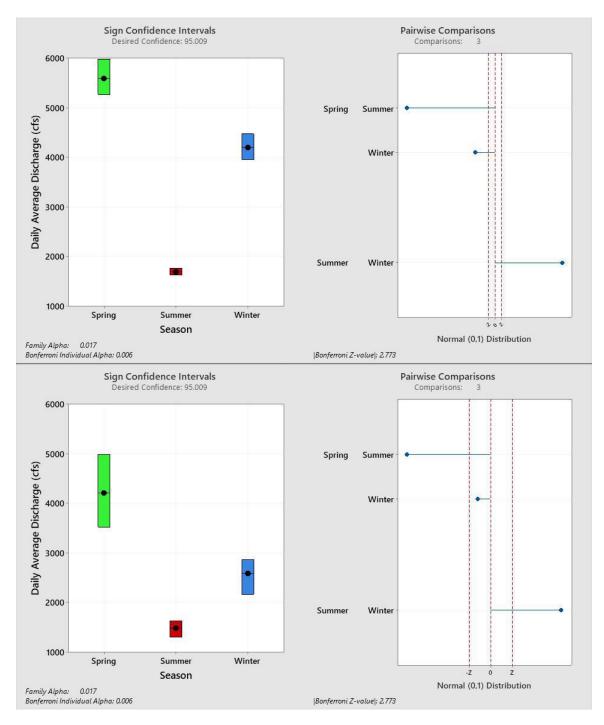


Figure 9. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each season from 1967-2019 (Top) and 2011-2019 (Bottom). Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between seasons ($p \le 0.006$).

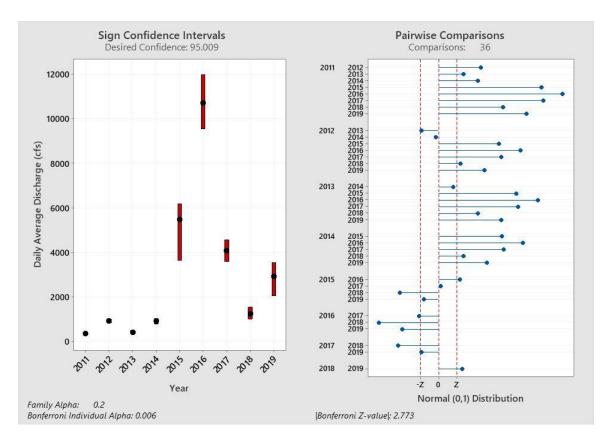


Figure 10. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the summer months. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between years ($p \le 0.006$).

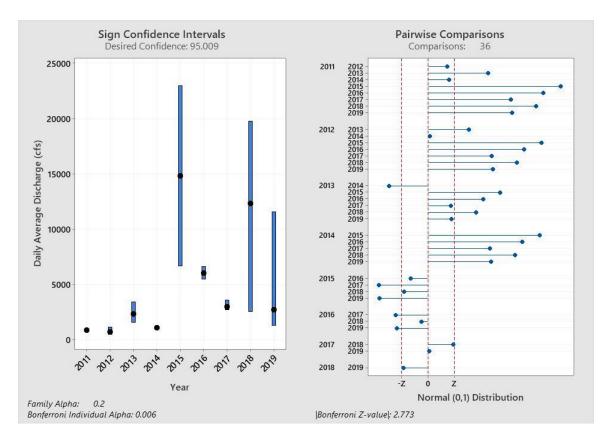


Figure 11. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the winter months. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the *Bonferroni-adjusted critical Z-value* indicates a significant difference between months ($p \le 0.006$).

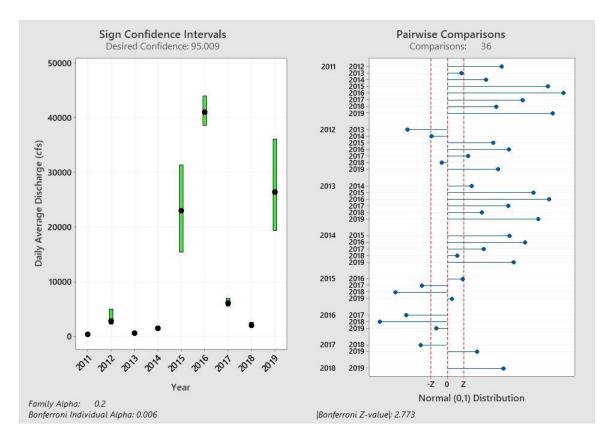


Figure 12. Dunn's multiple comparison test for significant differences in daily average discharge (cfs) between each year during the spring months. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the *Bonferroni-adjusted critical Z-value* indicates a significant difference between months ($p \le 0.006$).

Linear Modeling of Downstream Discharge

Simple linear regression analysis was performed in order to determine the best form of USGS gage discharge data for predicting discharge measured during sample dates upstream of TCEQ segment 1201 at B42. The continuous discharge data utilized for the linear regression was the value measured at the time closest to when the Sontek River Surveyor recorded field discharge on the corresponding sample date. Daily average discharge values from the corresponding sample date were also plotted against field discharge and placed side by side with the continuous data. The analysis revealed that both fitted models could account for the variation seen in the field discharge ($p \le$

0.05). The adjusted (R^2) for both models were exceptionally high, but the linear model using the continuous data had a slightly higher value of 0.8571 while the daily average discharge model had an (R^2) value of 0.8561 (Figure 13). The corresponding standard deviations (S) for each model were 1,222.13 and 1,226.12 respectively.

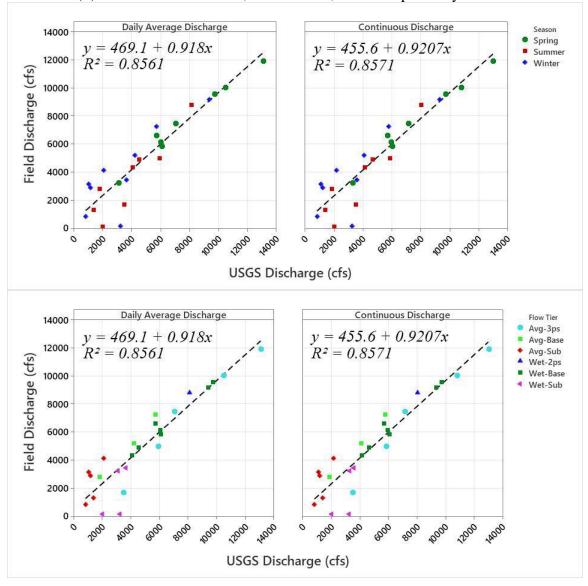


Figure 13. Linear regression models between field discharge and USGS discharge values with fitted line equations and adjusted (R^2) values.

Water Quality

Continuous Monitoring

Daily average discharge data was used as the primary predictor variable in various types of regression analysis for the data collected by the HOBO loggers and TROLL probes. As it was mentioned previously, the data was not utilized in its quarter-hourly time scale in which it was actively recording, but instead, daily average values were computed in R and R studio for pairing with daily average discharge data.

Temperature

When daily average temperature data was paired with daily average discharge data, there did not appear to be any distinguishable correlation between the two variables, and regression analysis supported that observation. However, when the temperature data was plotted against Julian day, it seemed to follow the pattern of a parabola (Figure 14). Regression analysis for a quadratic fit between Julian day and daily average temperature revealed high (R^2) values for each site (Figure 14). The corresponding standard deviations (S) for each site model were 2.73226 for the Upper site, 3.13674 for the Middle site, and 2.90323 for the Lower site. Given the apparent lack of variation in temperature between sites, a single quadratic model was also generated for the daily average temperature data of all the sites. With an (R^2) value of 0.807 and an (S) of 2.95729, the combined model does provide a good fit for the data ($p \le 0.05$) while explaining a high amount of variation in the data and low variation between the predicted and actual values (Figure 15).

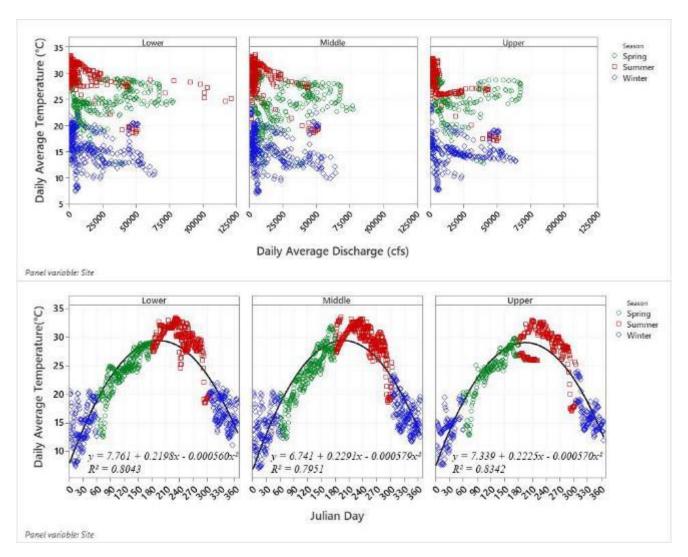


Figure 14. Scatterplots of daily average temperature and daily average discharge for each site (Top). Polynomial regression models for each site with corresponding (R^2) values between daily average discharge and Julian day (Bottom).

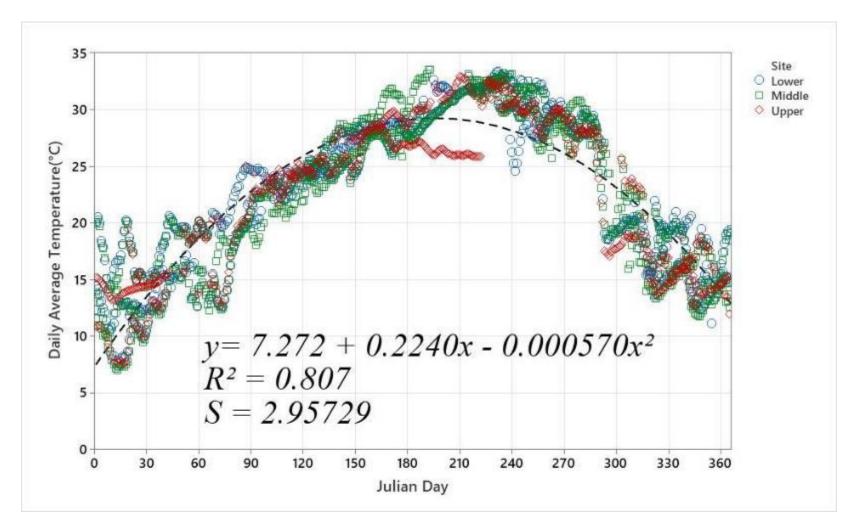
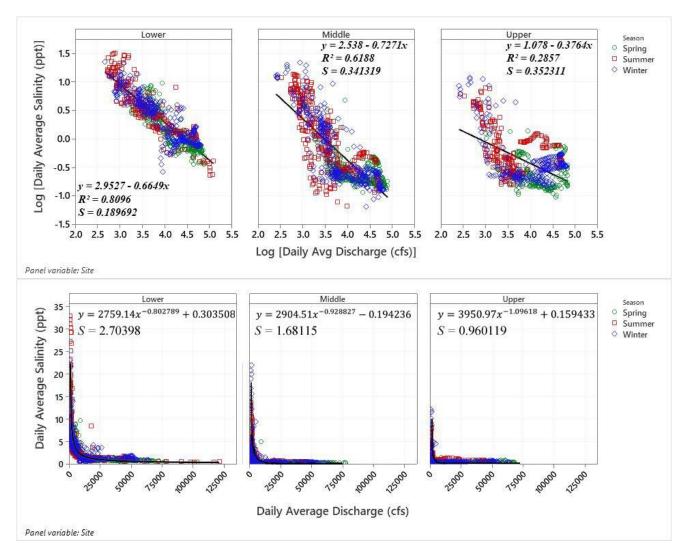



Figure 15. Polynomial regression model of daily average temperature and Julian day for the combined data of all continuous monitoring sites.

Salinity

Unlike water temperature, salinity had a much stronger relationship with river discharge. Two regression models between daily average salinity and daily average discharge were created: one linear, and one nonlinear. For the simple linear regression model, a Log₁₀ transformation was applied to both the daily average salinity and daily average discharge data prior to performing regression analysis. Although the analysis indicated the models were adequate for explaining the variation in the data ($p \le 0.05$), the (\mathbb{R}^2) values significantly decreased as distance upstream increased (Figure 16). The standard deviations (S) increased the further upstream the site was located. A nonlinear regression analysis was also performed in order to formulate a model that would be more applicable to all sites and/or not require any data transformation. In this case an exponential decay function was used to fit the discharge data with the salinity data without applying a transformation (Figure 16). The nonlinear model appeared to be a better fit for the Upper site given the standard deviation of 0.960119. However, the standard deviations for the Middle and Lower sites were significantly higher. Even after accounting for the log transformation, only the Lower site did not have a lower standard deviation for the nonlinear model.

Figure 16. Simple linear regression model between the log transformed daily average salinity and daily average discharge data (Top). Nonlinear regression model between the daily average salinity and daily average discharge data (Bottom).

Relative Depth

As was the case with salinity, the barometric pressure-adjusted depth measured by the TROLLs had a very clear correlation with river discharge and was subjected to both linear and nonlinear regression analysis (Figure 17). Unlike the salinity data however, no transformation was performed prior to regression analysis as it was deemed unnecessary for a simple linear regression model. When regression analysis was performed using the simple linear model, only the Middle site exhibited a significantly high (\mathbb{R}^2) value. Although the nonlinear regression analysis does not yield (\mathbb{R}^2) values for the generated models, the standard deviations (S) were all lower for each site, signifying the sigmoidal fitted line exhibits lower variation between the predicted values and actual values than the simple linear models do- particularly for the Upper site.

Dissolved Oxygen

Dissolved oxygen (DO) was not significantly correlated with river discharge (p >0.05), so temperature was chosen as the primary predictor variable (Table 4). However, even temperature could not explain more than 50% of the variation in DO at any site using the simple linear model (Figure 18). In order to generate a more powerful prediction model for daily average DO, multiple linear regression analysis was applied in order to determine if an interaction between temperature and discharge would explain a greater proportion of the variance in DO. The results of the multiple linear regression between discharge, temperature, and DO reveal that the addition of discharge to the model was a significant contribution ($p \le 0.05$), and the (\mathbb{R}^2) values increased while the (S) values dropped for each site model (Table 4).

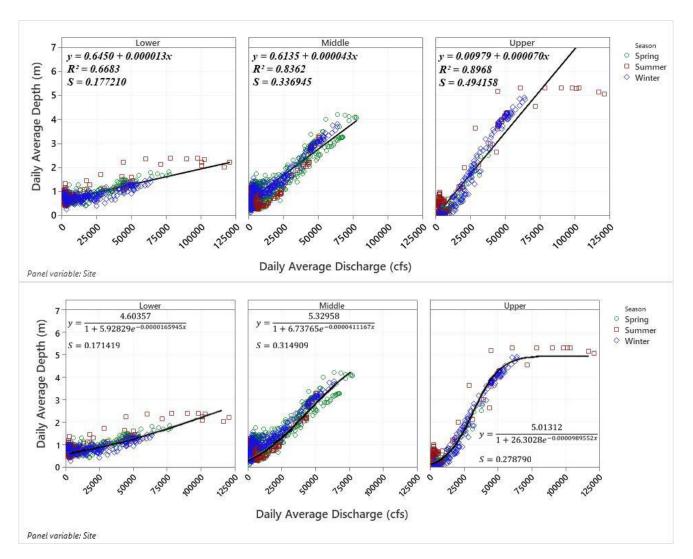


Figure 17. Simple linear regression model (Top) and nonlinear regression model between the daily average depth and daily average discharge data.

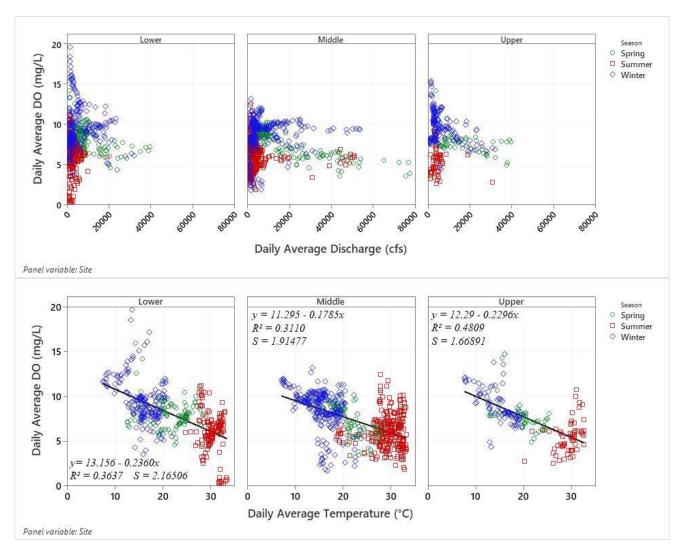


Figure 18. Scatterplots of daily average dissolved oxygen (DO) and daily average discharge for each site (Top). Linear regression models for each site between daily average discharge and daily average temperature (Bottom).

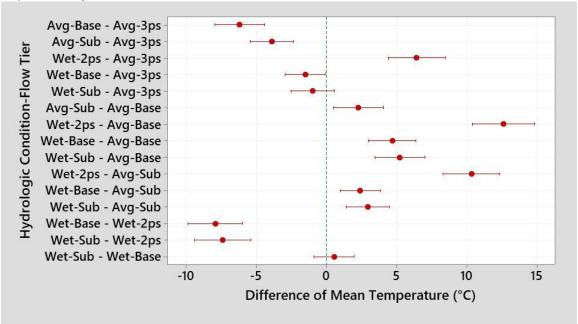
Variables Used	Site	Linear Regression Model	Adjusted	S	p-value
variables Used	Site	Linear Regression Woder	R ²	5	p-value
Daily Average	Upper	y = 8.834 - 0.000065(Q)	0.0457	2.43311	0.455
Discharge (Q)	Middle	y = 7.488 - 0.000012(Q)	0.0032	2.27405	0.071
	Lower	y = 7.841 + 0.000014(Q)	0.0457	2.86299	< 0.001
Daily Average	Upper	y = 12.29(T) - 0.2296	0.4809	1.66891	< 0.001
Temperature	Middle	y = 11.295(T) - 0.1785	0.3110	1.91477	< 0.001
(T)	Lower	y = 13.156(T) - 0.236	0.3637	2.16506	< 0.001
Daily Average	Upper	y = 13.497 - 0.2550(T) -	0.5523	1.54988	< 0.001
Discharge (Q)		0.000069(Q)			
and Daily	Middle	y = 11.770 - 0.1874(T) - 0.1874(T)	0.3394	1.87486	< 0.001
Average		0.000029(Q)			
Temperature	Lower	Y = 14.871 - 0.2815(T)	0.4328	2.04417	< 0.001
(T)		-0.000115(Q)			

Table 4. Results of simple linear and multiple regression analysis for daily average dissolved oxygen (DO) data.

Profile Summary

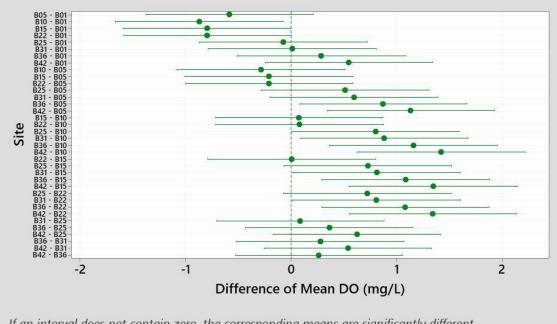
The full summary statistics of each water quality variable measured during profile measurements are categorized by site and flow tier in Appendix D. Mean water temperature increased only slightly as distance from the mouth increased, although there were noticeable differences between flow tiers. Mean temperature at all depths was typically higher during average hydrological conditions. Dissolved oxygen (DO) readings were lowest at the bottom, likely due to reduced light levels for photosynthesis and increased turbidity. DO did not conform to a linear pattern among sites, as mean concentrations were highest in the upper reaches of the river, followed by B25 and the sites closest to the mouth while the central interior sites exhibited the lowest DO values. As for flow tiers, lowest DO concentrations occurred during Wet-2ps sampling events, followed closely by both subsistence flow tiers while the highest DO concentrations were detected during base flows. Salinity exhibited the greatest variation among sites and flow tiers with sites becoming increasingly more saline the further upstream they are. Average hydrological conditions yielded salinities higher than wet conditions, and as the flow tier

decreased from pulse flows to subsistence, salinity increased. Thalweg depth also exhibited a similarly predictable variation; depth increased from subsistence to pulse flow tiers, and wet hydrologic conditions yielded greater maximum depths than the average hydrologic conditions. Sites that were closer to bends in the river- such as B15 and B22tended to have greater depths, but the maximum depth at the thalweg still displayed a declining trend as distance to the river mouth decreased. Secchi disk transparency was highest during subsistence flow tiers and during average hydrological conditions, and decreased as conditions became more wet, flow tier increased, and/or distance from the river mouth increased. Given the direct correlation between Secchi disk transparency and turbidity, the trends in turbidity exhibited an inverse relationship with the trends seen in Secchi disk transparency. The mean pH remained relatively stable across the sites and flow tiers, although wet flow tiers tended to yield more alkaline conditions, with the lowest recorded pH readings during the Avg-Base flow tier.


Interactions between Site and Flow Tier

A series of two-way analysis of variance (ANOVA) tests were conducted on water quality variables measured using profile measurements at all sample depths in order to determine significant differences between the mean values of sites, flow tiers, and if the two groups exhibit an interaction effect. A significance level of ($\alpha = 0.05$) was used for the interaction and additive models for the two-way ANOVAs. If the null hypothesis of the interaction model was rejected (p > 0.05), then Tukey's pairwise comparisons would be performed post-hoc for the additive model- two independent oneway ANOVAs- to determine the main effect of site and flow tier on the water quality variable being tested. If the null hypothesis for the interaction model failed to be rejected (p ≤ 0.05), site and flow tier would be broken down into levels so that subsequent

Tukey's pairwise comparisons could test for significant differences of means between all flow tiers or sites at only one site or flow tier level.


Variation in temperature did not exhibit an interaction effect between site and flow tier, and the initial results of the two-way ANOVA indicated there were also no significant differences in temperature between sites (Table 56). However, there were significant differences between flow tiers, and Tukey's pairwise comparisons revealed only two of the fourteen comparisons were not significantly different (p > 0.05) (Table 56; Figure 19). The results for dissolved oxygen (DO) also revealed no interaction effect, but there were significant differences between both sites and flow tiers (Table 57; Figure 20). The two-way ANOVA for turbidity revealed no interaction effect between sites and flow tiers, but as with DO, there were significant differences between sites and flow tiers. The Tukey's pairwise comparisons of sites seemed to show two distinct zones between sites- B01 to B10 and B15 to B42 (Table 58; Figure 21). The subsistence flows formed their own distinct group while the remaining flow tiers all collected into one large group, with Avg-3ps and Avg-Base being distinct from one another (Table 58). Thalweg depth did not exhibit an interaction effect between sites and flow tiers, but each group yielded significant differences (Table 59). The Tukey pairwise comparisons did not reveal any discernible spatial patterns, but wet flow tiers were significantly higher than average flow tiers, and a declining trend was observed from pulse to subsistence flows- except for Avg-Base which had the lowest mean depth (Figure 22). Secchi disk transparency also had no significant interaction effect between sites and flow tier but exhibited significant differences within site and flow tier. Unlike turbidity, Secchi disk transparency displayed an unbroken negative linear trend as sites became more distant from the mouth. Flow tier also followed a predictable trend of higher transparency during subsistence flows, and lowest transparency during wet flow tiers (Table 60; Figure 23).

Salinity and pH were the only water quality variables tested with two-way ANOVA that showed a significant interaction effect between site and flow tier ($p \le 0.05$). Salinity followed a predictable decreasing trend in magnitude as distance from the mouth decreased, wet flow tiers having lower mean salinities, and increasing mean salinity from pulse to subsistence flows (Figure 24; Figure 25). The significant differences observed in pH had less apparent trends, although the ones worth noting are the more alkaline conditions during wet flow tiers, and the interior sites having lower mean values (Figure 26; Figure 27). Since both variables yielded significant p-values, the post-hoc Tukey's pairwise comparisons required the separation of data based on the different levels of one grouping variable in order to test for significant differences of means between all the levels of the opposing grouping variable (Table 61; Table 62; Table 63; Table 64; Table 65; Table 66).

If an interval does not contain zero, the corresponding means are significantly different.

Figure 19. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean temperature ($^{\circ}C$) between flow tiers.

If an interval does not contain zero, the corresponding means are significantly different.

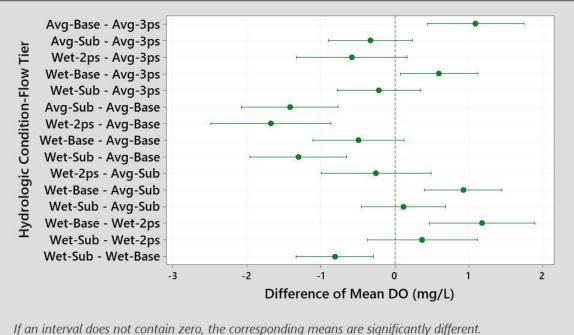


Figure 20. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean dissolved oxygen (mg/L) between sample sites (Top) and flow tiers (Bottom).

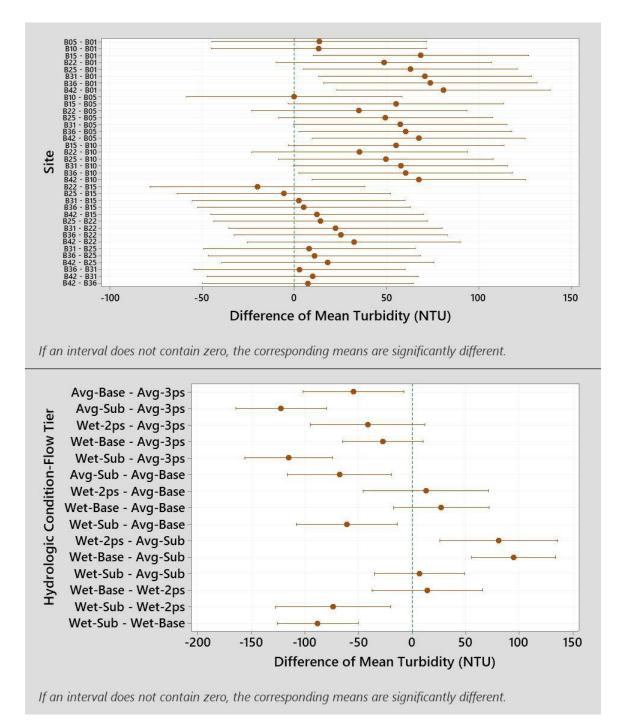
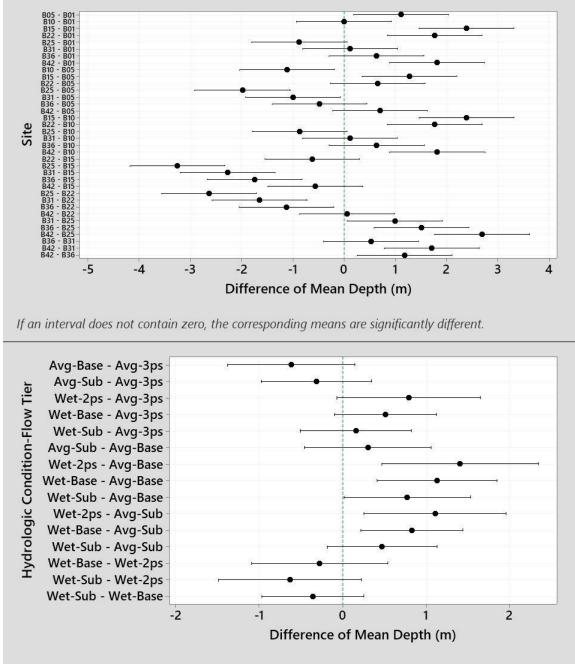
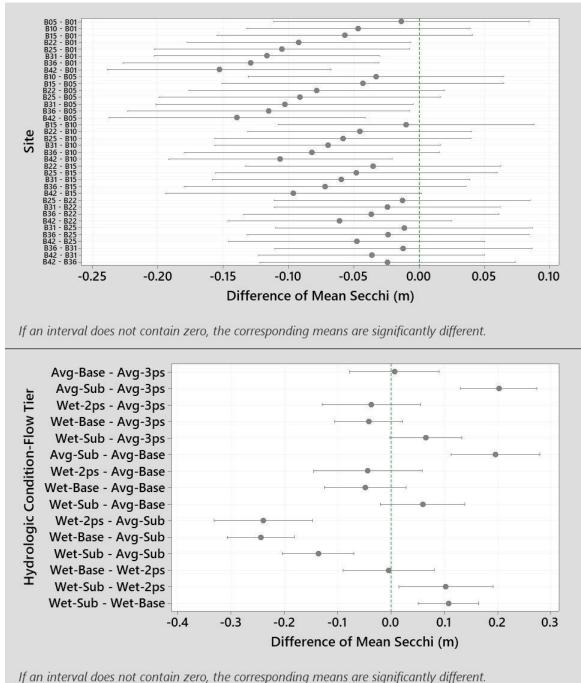




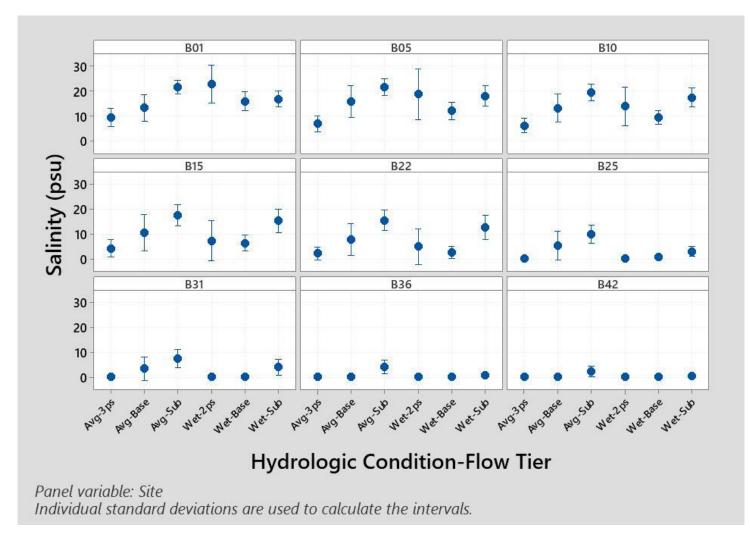
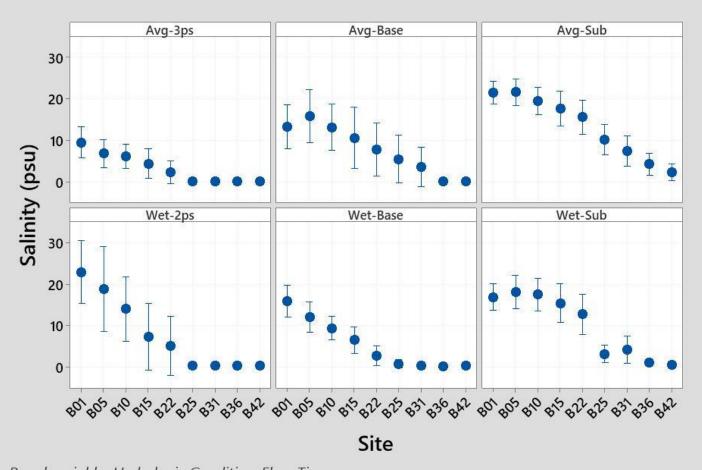
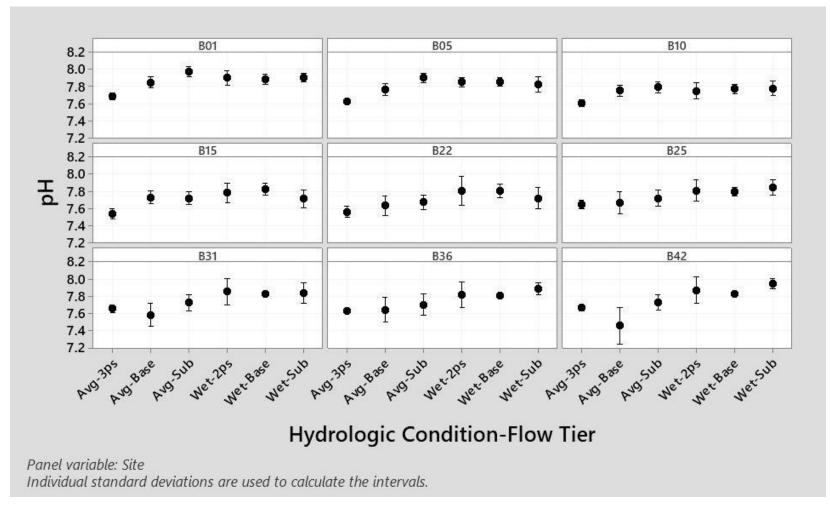
Figure 21. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean turbidity (NTU) between sample sites (Top) and flow tiers (Bottom).

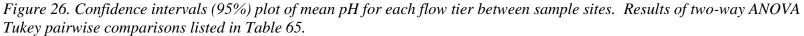
If an interval does not contain zero, the corresponding means are significantly different.

Figure 22. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean mid-channel total depth (m) between sites (Top) and flow tiers (Bottom).

if an interval does not contain zero, the corresponding means are significantly different.

Figure 23. Confidence intervals (95%) plot of Tukey's simultaneous tests for differences in mean Secchi disk transparency (m) between sites (Top) and flow tiers (Bottom).


Figure 24. Confidence intervals (95%) plot of mean salinity (psu) for each flow tier between different sample sites. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 63.

Panel variable: Hydrologic Condition-Flow Tier Individual standard deviations are used to calculate the intervals.

Figure 25. Confidence intervals (95%) plot of mean salinity (psu) for each sample site between different flow tiers. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 64.

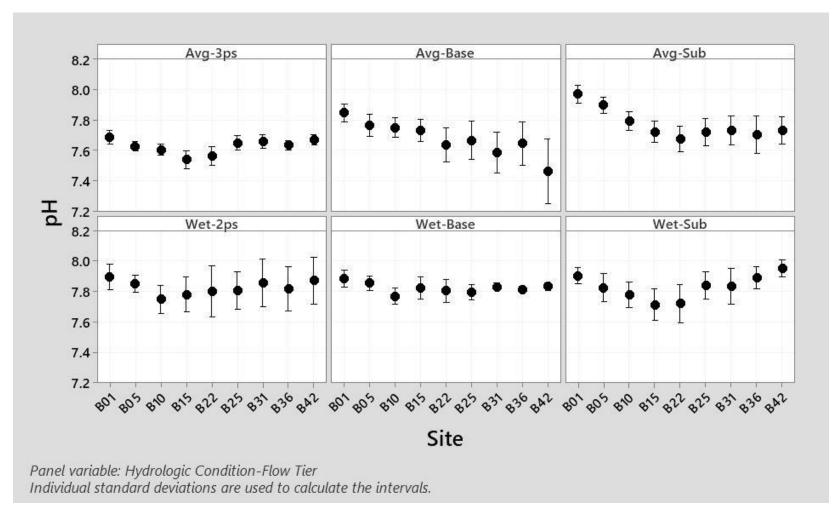
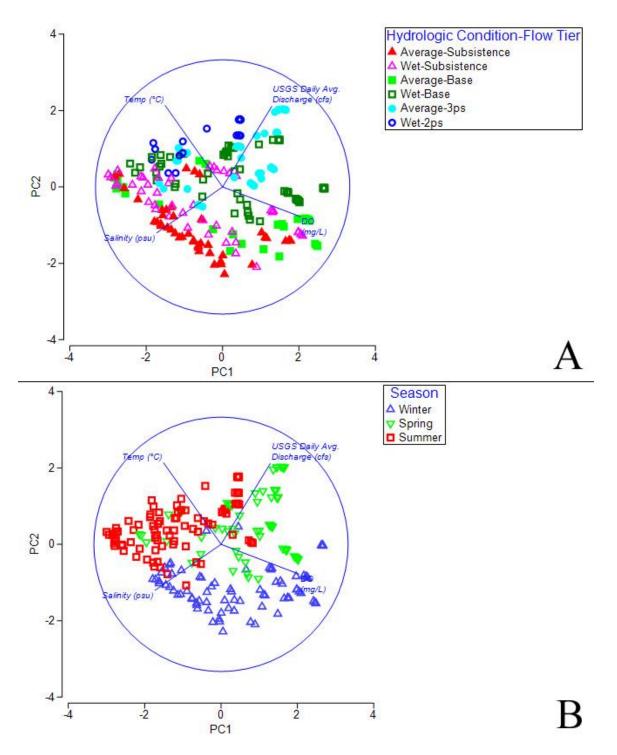
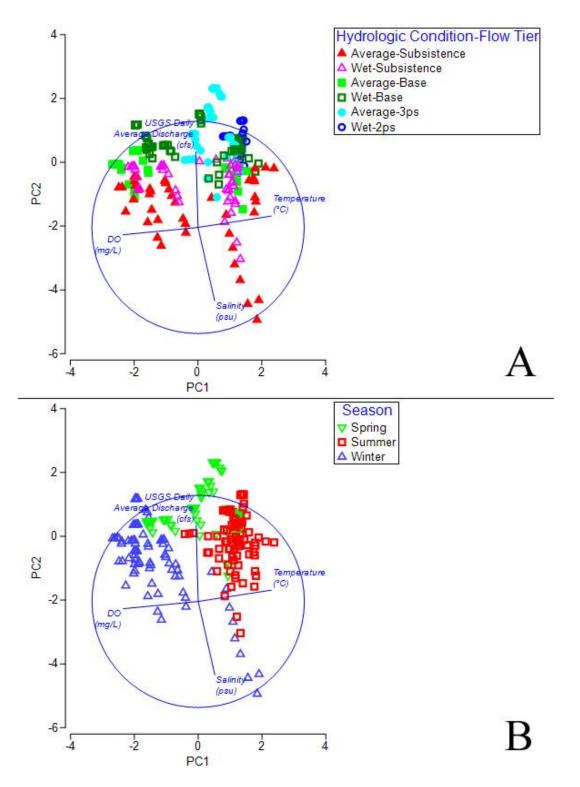



Figure 27. Confidence intervals (95%) plot of mean pH for each sample site between flow tiers. Results of two-way ANOVA Tukey pairwise comparisons listed in Table 66.


Principal Component Analysis

Principal Component Analysis (PCA) was run using PRIMER 7 in order to visualize patterns in water quality between seasons and flow tiers at both the surface and the bottom of the water column. For the bottom profile, principal component (PC) 1 accounted for 54.1% of the variation while PC2 accounted for 26.8%, equating to 81.4% total variation explained by PC1 and PC2. The coefficients of PC1 were a linear combination of -0.452 water temperature, -0.519 salinity, 0.613 dissolved oxygen (DO), and 0.387 daily average discharge. PC1 can be interpreted as an interaction effect between spatial differences and seasonal variation in water chemistry between the sample sites. The coefficients of PC2 were 0.641 water temperature, 0.361 salinity, -0.234 DO, and 0.635 daily average discharge. This could be interpreted as the combined effects of variation in season and increased flow tiers (Table 67; Figure 28).

The surface profile revealed less interaction between grouping variables when determining the source of variation in water quality. The coefficients of PC1 were a linear combination of 0.690 water temperature, 0.157 salinity, -0.706 DO, and -0.019 daily average discharge. PC1 in this case could be interpreted as primarily seasonal variation since temperature and DO are driving the variation. Conversely, daily average discharge and salinity dominated PC2 at 0.711 and -0.692 respectively while DO and temperature contributed very little at 0.069 and 0.106 respectively. This would indicate PC2 represents the impacts of increasing flow tiers, and the disparity in salinity between sample sites. PC1 explained 44.5% of the variation while PC2 explained 34.9%, making a cumulative total of 79.4% (Table 68; Figure 29). These results would also indicate that the perceived effects of seasonality, spatial differences and flow tier variation have more comparable effects at the surface than at the bottom. It also suggests that impact of river discharge on the variation in water quality is greater at the surface.

Figure 28. Principal component analysis (PCA) of normalized water quality profile samples taken at the bottom. Individual samples are grouped by flow tier (A) and season (B).

Figure 29. Principal component analysis (PCA) of normalized water quality profile samples taken at the surface. Individual samples are grouped by flow tier (A) and season (B).

The profile readings taken in the Gulf of Mexico (GOM) also revealed discernible patterns, although with fewer samples to use for the analysis, these results should be considered preliminary (Figure 30). For both surface and bottom profile readings, temperature and salinity were the dominant coefficients for PC1, while DO and total depth were the dominant coefficients in PC2. PC1 can be interpreted as the effects of seasonal variation, while PC2 can be interpreted as the spatial variation due to proximity to the river mouth. However, the percent variation explained by PC1 was 68.6% for the bottom profile while it was only 40.5% for the surface profile. PC2 saw less disparity between the two profiles; 30.2% variation explained in bottom water quality and 33.6% variation explained in surface water quality (Table 69; Table 70).

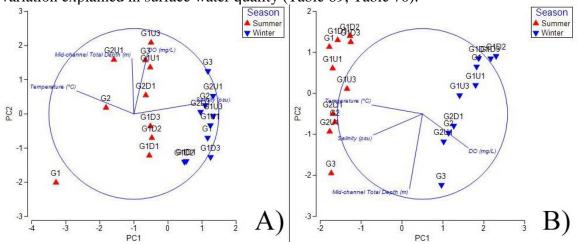


Figure 30. Principal component analysis (PCA) of normalized water quality profile samples taken from sample sites in the Gulf of Mexico (GOM) at the surface (A) and bottom (B).

Nekton Community

Community Metrics

Nekton replicates were compiled into collections so that only one value for each biological metric would be needed to represent the nekton community for the sample site and gear type for each sample date. This data would then later be used for testing relationships between biological data, water chemistry, and hydrology. A full summary table of the community metrics used in the subsequent analyses is found in Appendix G.

Total catch and catch per unit effort (CPUE) for each otter trawl collection could vary sporadically throughout the seasons and sites, but B10 and B01 would typically exhibit greater total catch and CPUE, with the maximum total catch and CPUE occurring on March 12th, 2019, at B10 with 2,827 individuals and 188.467 respectively (Table 34). A total of 123 otter trawl collections containing 37,909 individuals have been performed at the sample sites within the Brazos River since 2014, and only one yielded zero catch without being incomplete- B22 on September 27th, 2018 (Table 27; Table 34). Beam trawl collections totaled at 118 within the same time frame, but a total of 20 completed collections yielded zero catch and CPUE. Of those 20 collections, only the collection at B22 on December 20th, 2016, did not occur during the summer season. The maximum beam trawl yield occurred on January 7th, 2015, at B01 with a total catch of 1,368 individuals and a CPUE of 29.92126 (Table 33). The largest cumulative total catch values for the beam trawl were 4,285 individuals from 2014-2015 when grouped by study period, and 3,582 individuals at B01 when grouped by site. The lowest cumulative total catch values for the beam trawl method were 602 individuals for the current study, and 460 individuals at B31 (Table 25; Table 26). For the otter trawl collections, the largest cumulative catch occurred during the current study at 15,590 individuals when examining study periods and 14,523 individuals at B01 when comparing sites. The lowest cumulative catch yields occurred during 2014-2015 at 10,455 individuals and 506 individuals at B42 (Table 27; Table 28).

The taxa collected throughout the years has also been subject to large variations in number of taxa collected and species compositions. The lowest cumulative number of species collected for a given study was during the Emmitte (1983) study at 37 while the

highest cumulative number of species collected was during the Miller (2014) study at 63. The most taxa collected cumulatively during the time frame of the data used for analysis was 61 from 2014-2015 while the lowest was 49 for the current study (Table 31). The greatest number of taxa tallied for any single collection was using the otter trawl at a total of 15. This occurred once during the winter on December 1st, 2016, and once during the summer on September 5th, 2019 (Table 34). Since the Johnson (1977) study, a total of 124 nekton taxa have had their presence in the Brazos estuary confirmed using the sampling gear and methods outlined in this study, with a total of 16 species being collected during every major study since then. However, four species of fish and one invertebrate were documented in the estuary only as recently as the current study using identical sampling methods. Red Shiner (Cyprinella lutrensis), Blacktail Shiner (Cyprinella venusta), and Ghost Shiner (Notropis buchanani) were confirmed with the beam trawl, while the Thinstripe Hermit Crab (Clibanarius vittatus) and Crested Cusk Eel (Ophidion josephi) were confirmed using the otter trawl. All the listed species were collected during the month of July apart from the Thinstripe Hermit Crab which was collected on March 12th, 2019 (Table 30).

Shannon-Wiener Diversity ($H^{}$), Shannon Evenness ($J^{}$), and Margalef Richness were all used as indices to measure diversity and homogeneity of species in the Brazos River. Shannon-Wiener diversity between sampling methods typically exhibited inverse relationships with each other regarding season and site, but patterns among flow tiers were less distinguishable. The maximum calculated ($H^{}$) values for both sample methods were recorded on the same date- December 11th, 2014, during an Avg-Sub flow tier- at B10 with a value of 2.098 for the otter trawl, and B31 with a value of 1.698 for the beam trawl. The maximum Margalef Richness Index calculated for the otter trawl was 2.97 and occurred on the same date and site as the maximum calculated ($H^{}$). The maximum

Margalef Richness index for beam trawl catch data of 2.485 occurred at a different sample site and date: May 24th, 2017, at B42 during a Wet-Sub flow tier (Table 33; Table 34). Shannon evenness (J) is measured on a scale of zero to one in order to determine how similar the abundances of each species collected are in each sample. The (J) for the beam trawl data ranged from zero to one at all sites, seasons and flow tiers except for B01 where the maximum evenness calculated was 0.968 and the Wet-Sub flow tier which was the only flow tier that reached the minimum value of zero. Evenness for otter trawl catch data ranged from zero to one during all seasons, but not for all flow tiers and sites. Only during the Avg-3ps and Wet-Base flow tiers was the range for evenness all-encompassing, but the Avg-Base flow tier did reach the maximum value of one. Evenness only reached its minimum value for the otter trawl samples at B22, B31 and B42. Of those three sites, only B31 did not reach the maximum value. Site B01 attained both the maximum and minimum Shannon evenness (Table 33; Table 34).

Correlation Analysis

After the nekton samples were mathematically classified using the various community metrics outlined above, the next step was to pair the nekton data with the concurrent water quality and hydrological data and calculate statistically significant linear correlations ($p \le 0.05$) between the data. Pearson correlation analysis was performed in R in order to calculate correlations between all available data and plot them in a correlation matrix (Figure 31; Figure 32). Water quality data was separated by data taken from the bottom profile and the surface profile in order to quantify if existing correlations between biological and physiochemical data are more prominent in different regions of the water column.

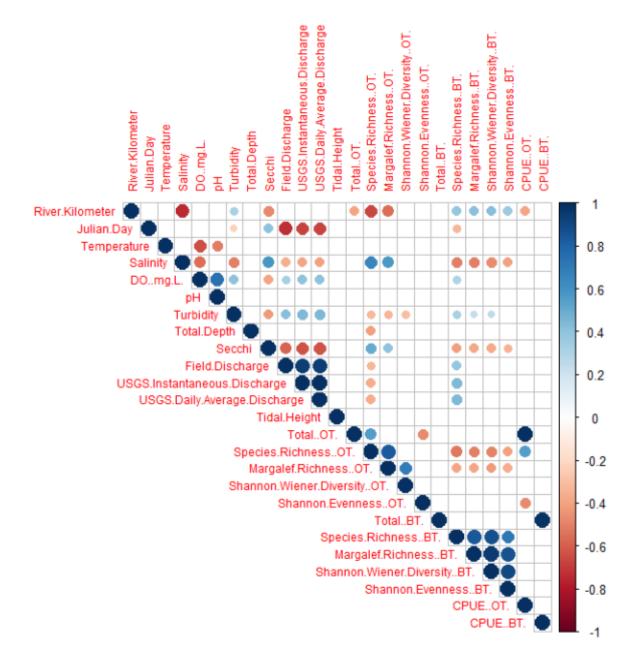


Figure 31. Pearson correlation matrix between hydrology and nekton community metrics with bottom profile water quality. Red circles represent negative correlations while positive correlations are colored blue. Strength of correlation is indicated by circle size and color saturation. Any blank square indicates an insignificant (p > 0.05) correlation between the two corresponding variables. (OT = otter trawl, BT = beam trawl).

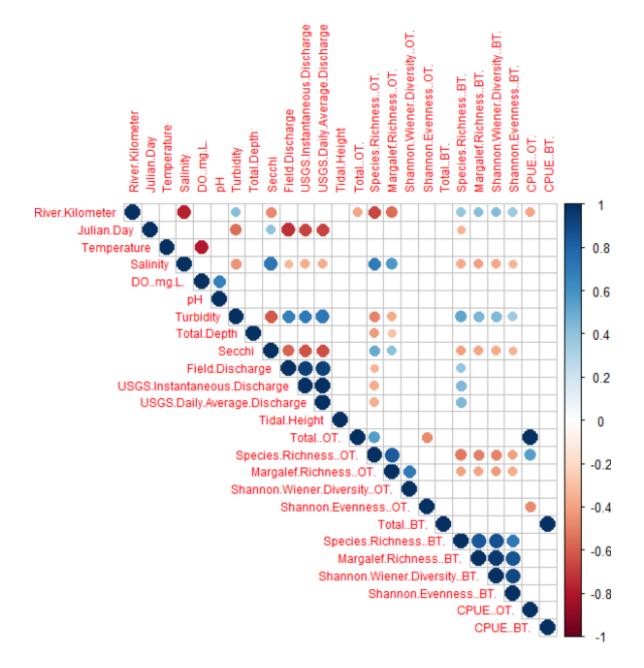


Figure 32. Pearson correlation matrix between hydrology and nekton community metrics with surface profile water quality. Red circles represent negative correlations while positive correlations are colored blue. Strength of correlation is indicated by circle size and color saturation. Any blank square indicates an insignificant (p > 0.05) correlation between the two corresponding variables. (OT = otter trawl, BT = beam trawl).

Variables that exhibited significant correlations with the at least one nekton

community metric included river kilometer (distance from the mouth), Julian day, salinity

(psu), DO (mg/L), turbidity (NTU), total depth (m), Secchi disk transparency (m) and river discharge (cfs). Otter trawl data negatively correlated with river kilometer included total catch, species richness, Margalef Richness and CPUE, with species richness exhibiting the strongest correlation of all the listed variables at both the bottom (r = -(0.666) and the surface (r = -0.668). Beam trawl data was positively correlated with river kilometer, but total catch and CPUE did not exhibit significant correlations. The Shannon-Wiener diversity index exhibited the strongest correlation with river kilometer at the bottom (r = 0.426) and the surface (r = 0.430). Beam trawl species richness was negatively correlated with Julian day at the bottom (r = -0.338) and surface (r = -0.344) but exhibited a significant positive correlation with DO only at the bottom (r = 0.307). Salinity was most strongly correlated with biological data among all water quality and hydrological variables tested. Species richness and Margalef Richness for otter trawl catch exhibited significant positive correlations with salinity at the bottom (r = 0.656, and r = 0.573) and surface (r = 0.708, and r = 0.578). The beam trawl catch data demonstrated an inverse relationship with salinity; species richness, Margalef Richness, Shannon-Wiener Diversity, and Shannon evenness exhibited significant correlations with salinity at both the bottom and surface. Of the listed community metrics, species richness exhibited the strongest correlation with bottom salinity (r = -0.506) while Margalef Richness was most strongly correlated with surface salinity (r = -0.414).

Turbidity, Secchi disk transparency and river discharge all exhibited significant correlations with each other and the nekton community data for the otter trawl and beam trawl. Species richness, Margalef Richness, and Shannon-Wiener Diversity for otter trawl collections were significantly correlated with turbidity at the bottom (r = -0.327, r = -0.333, and r = -0.308). At the surface, only species richness and Margalef Richness were significantly correlated with turbidity at (r = -0.374) respectively.

Species richness for beam trawl data exhibited the strongest positive correlation with turbidity at the bottom (r = 0.326) and surface (r = 0.529). Species Richness, Margalef Richness, and Shannon-Wiener Diversity were all significantly correlated with bottom and surface turbidity, while Shannon evenness was significantly correlated with only surface turbidity. The correlations observed between turbidity and nekton data were almost perfectly inverse that of the correlations observed with Secchi disk transparency. All the variables correlated to turbidity were correlated to Secchi disk transparency at the surface, with the species richness once again exhibiting the strongest correlation of all for the otter trawl (r = 0.508) and beam trawl (r = -0.416). Between all the nekton community metrics, only species richness was significantly correlated with river discharge. Species richness for otter trawl collections was negatively correlated with all discharge metrics while beam trawl species richness was positively correlated. Of the three flow measurements- field, instantaneous, and daily average- used to test for correlations, daily average discharge from the USGS gage near Rosharon yielded the strongest correlations for otter trawl (r = -0.370) and beam trawl data (r = 0.445). Total depth was the final water quality variable significantly correlated with nekton community data, but only with otter trawl species richness (r = -0.422) (Table 71; Table 72; Table 73; Table 74).

Community Similarity

The SIMPER test was used in PRIMER 7 in order to calculate similarity between nekton communities between sites, seasons, and flow tiers for each sampling method. Site B01 exhibited the highest average similarity among the otter trawl collections within the river at 45.36%. The dominant species included Atlantic Croaker (*Micropogonias undulatus*), Star Drum (*Stellifer lanceolatus*), White Shrimp (*Litopenaeus setiferus*), and Blue Crab (*Callinectes sapidus*) (Table 75). The average percent similarity between

beam trawl collections at B01 was 11.25%, with only two primary contributors: Atlantic Croaker and Gulf Menhaden (Brevoortia patronus) (Table 76). The site with the greatest average similarity between beam trawl collections was B42 at 19.57%, but for otter trawl collections the average percent similarity of B42 collections was nearly double at 35.08%. The species contributing to the average similarity included Ohio River Shrimp (Macrobrachium ohione) for both gear types, Blue Catfish (Ictalurus furcatus) for the otter trawl, and Daggerblade Grass Shrimp (Palaemonetes pugio) for the beam trawl (Table 75; Table 76). The similarity in nekton communities for otter trawl collections were fairly streamlined in how the species compositions changed. B01 and B10 had the same species contributing to average percent similarity with the only exception being the fourth species; Blue Crab contributed to B01, but for B10 it was Bay Anchovy (Anchoa *mitchilli*). The transition to B22 saw a decrease in the number of contributor species to three, with Blue Catfish contributing the most (39.99%), followed closely by Atlantic Croaker and White Shrimp. Finally, the transition to primarily freshwater species was cemented at B31 as the contributing species dropped to two and were identical for B31 and B42 (Table 75).

For the beam trawl communities, the changes in contributor species were more sporadic, as evidenced by the low percent similarities between collections. From B01 to B10, White Shrimp was included in the cumulative percent similarity, but was then replaced as the primary invertebrate with Blue Crab and Daggerblade Grass Shrimp. B31 did not include Atlantic Croaker in contribution to average similarity, and B31 exhibited the lowest average percent similarity between collections at 8.58%. B42 did not have any fish species contributing to average similarity between beam trawl collections (Table 76).

Season was the second grouping variable among nekton collections subjected to SIMPER analysis. However, collections from B42 were excluded for the SIMPER

analysis between seasons since this site was not sampled during the current study, and therefore represents incomplete spatial data for each season. Otter trawl collections for each season included Atlantic Croaker and Blue Catfish as major contributors to sample similarity. Additional contributor species during the spring season included Blue Crab and Ohio River Shrimp. During the winter season, White Shrimp and Bay Anchovy preceded Blue Catfish in contributing the greatest percent similarity between collections. For the summer season there were a total of five species contributing to average percent similarity: White Shrimp, Atlantic Croaker, Star Drum, Sand Seatrout (*Cynoscion arenarius*), and Blue Catfish. The summer season exhibited the greatest average percent similarity between otter trawl collections at 32.06%, while the seasons of spring and winter exhibited the greatest average percent dissimilarity to each other (79.12%) (Table 77).

Conversely, the beam trawl collections during the summer season exhibited the lowest percent similarity (1.56%) while the winter season presented the greatest average percent similarity (20.63%). Despite these disparities in similarity between collections, it was the pairing of spring and summer that had the greatest average dissimilarity (97.05%). The species comprising the greatest cumulative percent similarity for the winter season included Atlantic Croaker, White Shrimp, and Darter Goby (*Ctenogobius boleosoma*). During the spring season, the contributor species consisted of Gulf Menhaden, Daggerblade Grass Shrimp, Bay Anchovy and Atlantic Croaker. Bay Anchovy was the greatest contributor species during the summer season, followed by Blue Crab, Darter Goby, and the Skimmer Dragonfly nymph (*Libellulidae spp.*) (Table 78).

Each of the six flow tier classifications that the river experienced since 2014 were also subjected to SIMPER analysis to discern if any patterns in community similarity

could be observed when grouped by flow tier. Like the seasonal analysis, B42 collections were excluded from SIMPER analysis between flow tiers so as not to give equal weighting to site collections that lack representatives from the current study. Atlantic Croaker was calculated to be a major contributor to percent similarity between otter trawl collections of all flow tier categories. Avg-Sub and Wet-Sub each shared three species contributing to average percent similarity: Atlantic Croaker, White Shrimp, and Bay Anchovy: However, the final contributor species for Avg-Sub conditions was Spot (Leiostomus xanthurus), while for Wet-Sub it was Star Drum and Sand Seatrout. The percent similarity between collections for the Avg-Sub flow tier was also the highest among all the flow tiers at 33.42%. The base flows also shared most of the species contributing to average percent similarity: Atlantic Croaker, Blue Catfish, and Blue Crab. For Avg-Base the species list also included White Shrimp, while for Wet-Base there were two additional species contributing to sample similarity: Star Drum and Ohio River Shrimp. During the pulse flows, the three fish species comprising the sample similarities included Atlantic Croaker, Star Drum, and Blue Catfish, but Avg-3ps also included Ohio River Shrimp while the Wet-2ps flow tier include White Shrimp (Table 79).

The nekton communities sampled with the beam trawl exhibited far greater average percent dissimilarity between flow tiers and average similarity between collections within a single flow tier than what was calculated for the otter trawl data. Collections during Avg-Sub and Wet-Sub flow tiers were composed of similar contributing species, though Wet-Sub exhibited the lowest average similarity percentage (5.24%) while Avg-Sub was the second highest (16.36%). Primary contributors for both flow tiers included White Shrimp and Atlantic Croaker, though Avg-Sub also included Blue Crab. Avg-Base and Avg-3ps exhibited the lowest average percent dissimilarity

from one another at 84.45%. The species contributing to the percent similarity between collections included Atlantic Croaker, Darter Goby, and Gulf Menhaden for both flow tiers, with the addition of Daggerblade Grass Shrimp for Avg-3ps. The communities sampled under Wet-Base conditions were most similar to the pulse flows, with Striped Mullet (*Mugil cephalus*), Daggerblade Grass Shrimp, Gulf Menhaden, and Bay Anchovy comprising the greatest cumulative percent similarity between collections (Table 80).

Multivariate Analysis

In order to better examine and portray the similarities between nekton abundances from otter trawl collections, Nonmetric Multidimensional Scaling (nMDS) analysis was conducted in order to plot each collection in two-dimensional space and observe relationship trends between collections based on site, season, and flow tier. Three collections were excluded from the analysis due to zero catch and/or failure to complete all three replicates within the collection: B22 on September 27th, 2018, B22 on October 17th, 2019, and B31 on October 17th, 2019 (Table 34). An Analysis of Similarities (ANOSIM) test was also performed to provide statistical transparency of observed patterns and determine if similarity between groups was greater than or equal to similarity within groups (Clarke and Gorley 2015).

When categorizing total catch from otter trawl collections by site, there was a visible a gradient between the downstream sites, and the upstream sites, with B22 acting as a median. However, the results of the ANOSIM test revealed the only sites with collections having greater similarity to each other than within their own site were B31 and B42 (p > 0.05) (Figure 33). Every other pairwise comparison between site collections was significantly different, but the rho (R) values of each comparison revealed that average dissimilarity between collections decreased as distance (km) between sites decreased (Table 81). Collections between seasons were all significantly

different from one another, with the collections between spring and summer exhibiting the greatest (R) value of 0.114, and therefore the greatest dissimilarity (Table 82). The patterns of dissimilarity were more difficult to discern by the nMDS plot alone, but the results of the ANOSIM revealed the significant differences (Figure 34). The Avg-Sub flow tier was significantly different from Avg-Base, Avg-3ps and Wet-Base (Figure 35). The Wet-Sub flow tier was also significantly different from Avg-3ps and Wet-Base ($p \le$ 0.05), and the (R) value was highest between Wet-Sub and Wet-Base (0.035) (Table 83).

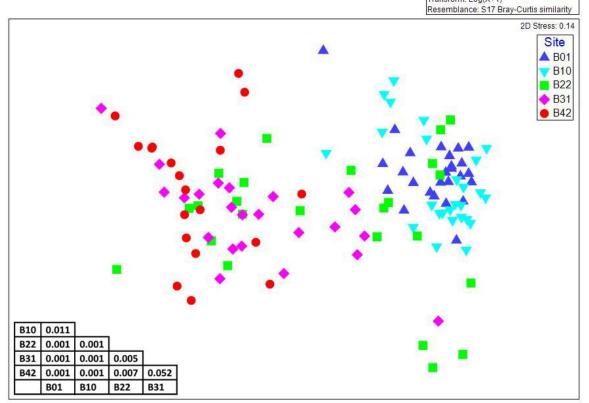


Figure 33. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by site. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner.

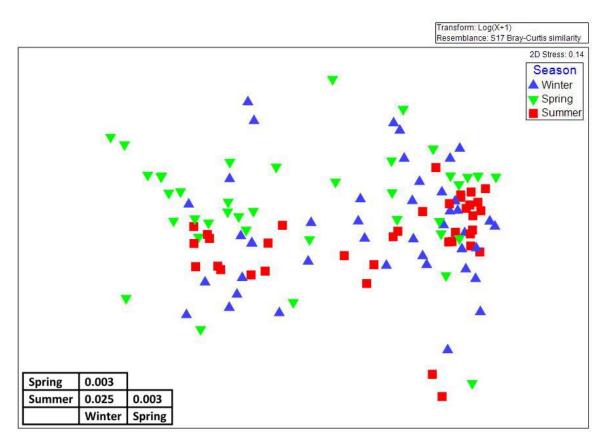


Figure 34. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by season. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner.

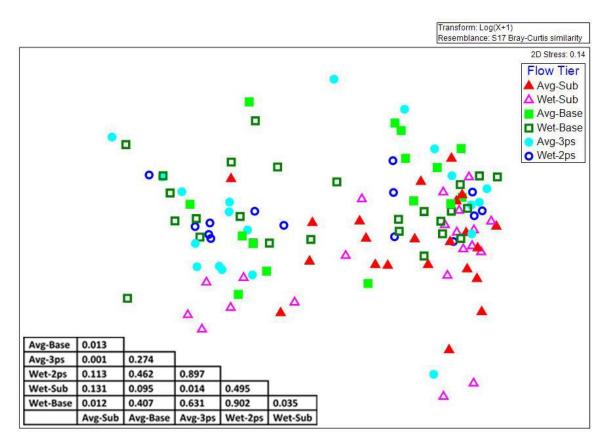


Figure 35. Non-metric MDS ordination plot of ranked similarity of nekton community total catch between 120 otter trawl collections by flow tier. The p-value results from the Analysis of Similarities (ANOSIM) test are listed in the table in the lower left corner.

The ANOSIM results for the beam trawl collections revealed similar patterns to what was observed for the otter trawl collections. B01 collections were significantly different and dissimilar from collections at all other sites except B10 (R = -0.02, p = 0.814). Collections from B10 were calculated to be distinct only from B42 (R = 0.16, p = 0.003). In addition to being significantly different from B01, beam trawl collections at B22 were significantly different from B42 collections (R = 0.156, p = 0.003). Collections from B42 proved to be significantly different from all sites except B31 (Table 84). When significant differences between seasons were analyzed for beam trawl collections, all seasons were determined to be significantly different from one another, but unlike the otter trawl collections, winter and summer exhibited the greatest average

dissimilarity ($\mathbf{R} = 0.321$) (Table 85). The results of the ANOSIM test comparing beam trawl collections between flow tiers showed that Avg-Sub conditions were significantly different from all other flow tiers, with the greatest average dissimilarity between Wet-2ps conditions ($\mathbf{R} = 0.378$). Other pairwise comparisons that proved to be significantly different included Avg-3ps and Wet-Sub, as well as the comparison between Avg-Base and Wet-2ps (Table 86).

The final form of multivariate analysis was Cluster analysis in PRIMER 7 in order to determine significant groupings between otter trawl collections from the GOM. The first significant cluster to be identified was a combination of the G1 and G1U1 collections from the summer with a percent similarity of 77.18%. The next cluster to be identified was that of G1 and G2 during the winter with a percent similarity of 76.61%. This cluster was then subsequently grouped with the collection from G1U1 during winter to form yet another cluster with an average similarity of 71.37%. The final cluster composed of individual collections included G2 and G1D1 with an average similarity of 46.59% (Table 87).

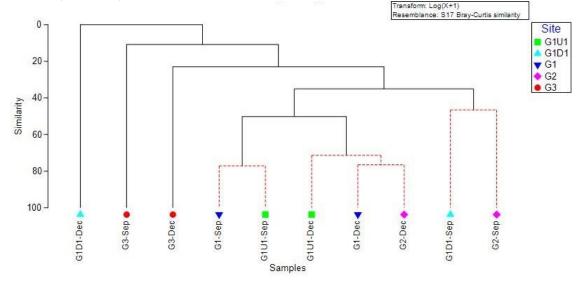


Figure 36. Dendrogram of GOM otter trawl collections describing percent similarity between nekton abundances at different sites using cluster analysis.

Variation in Nekton Diversity

The final stage of data analysis for the nekton collections was the usage of the nonparametric Kruskal-Wallis test and Dunn's multiple comparisons in order to determine how the different measures of nekton community diversity vary spatially, seasonally, and by flow tier. Collections from all sample sites were used in order to quantify significant differences between the medians of the various community metrics when grouped by site. However, because B42 was not sampled during the current study, community metrics from this site were excluded when examining variation between seasons and flow tier in order to ensure equal distribution of data between these groups. In addition, the family (α) for the Kruskal-Wallis test was adjusted according to what grouping variable was being tested so that the Bonferroni-adjusted (α) for each individual comparison would always be identical and yield 95.009% confidence intervals of the medians.

Total catch did not exhibit any significant differences among beam trawl collections when comparing sites (p > 0.0556) or flow tiers (p > 0.0834) (Table 88; Table 90). However, there were significant differences detected between the seasons; summer was significantly different from both winter and spring ($p \le 0.0167$) (Figure 37). When total catch between otter trawl collections was subjected to the same analysis, no significant differences between seasons were detected (p > 0.0167) (Table 92). When examining spatial variation of total catch, B42 was determined to be significantly different from all other sites, and there was also a significant difference between B01 and B22 (Figure 38). Median total catch between flow tiers did exhibit significant different from that of Wet-Sub and Avg-Sub (Figure 39).

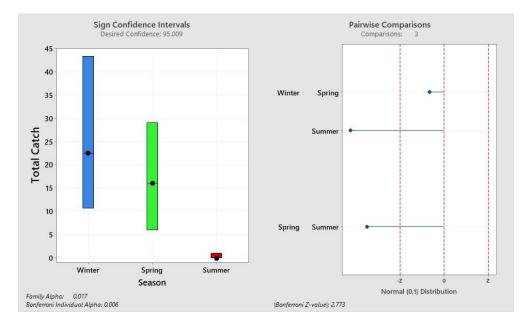


Figure 37. Dunn's multiple comparison test for significant differences in beam trawl total catch between seasons. Bars signify the 95.009% confidence interval of the median ($\bullet =$ median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between seasons ($p \le 0.006$).

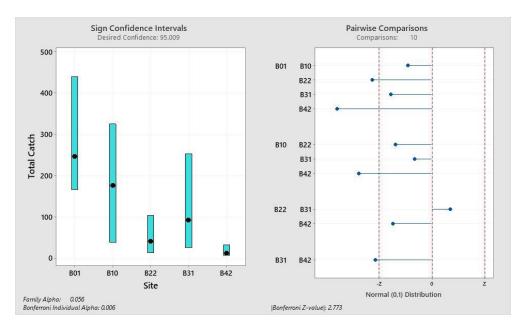


Figure 38. Dunn's multiple comparison test for significant differences in otter trawl total catch between sites. Bars signify the 95.009% confidence interval of the median ($\bullet =$ median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

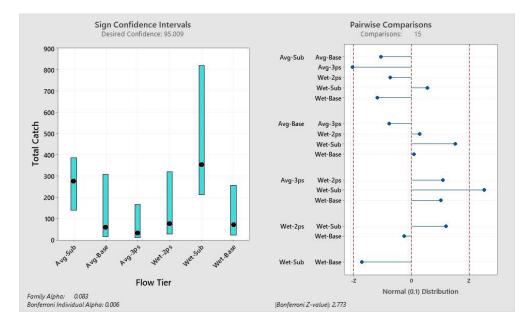


Figure 39. Dunn's multiple comparison test for significant differences in otter trawl total catch between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between flow tiers ($p \le 0.006$).

Median species richness was significantly different between season ($p \le 0.0167$) and flow tiers ($p \le 0.0834$) for beam trawl collections. Between flow tiers however, the only pairing determined to be significantly different was Avg-3ps and Wet-Sub (p =0.0017) (Table 96; Figure 67). Species richness during the summer was significantly lower than during the winter (p < 0.001) or spring (p < 0.001) (Figure 40). Species richness for otter trawl collections did not exhibit significant differences in medians between seasons, but significant differences between sites (p < 0.001) and flow tiers (p =0.001) were detected (Table 97; Table 98; Table 99). Site B01 exhibited significant differences in median species richness between all sites except B10 (p = 0.312). B10 had identical statistical comparisons between sites as B01 (Figure 41). Significantly different pairings between flow tiers for otter trawl collections included Wet-Base to Avg-Sub, Avg-Sub to Avg-3ps, and Avg-3ps to Wet-Sub (Figure 42).

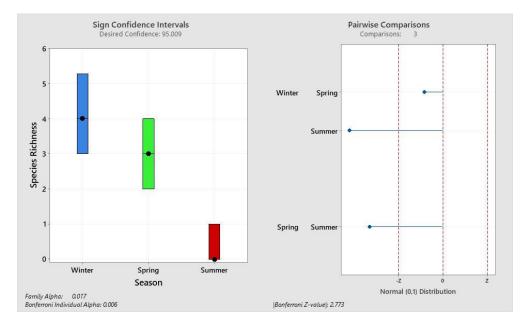


Figure 40. Dunn's multiple comparison test for significant differences in beam trawl species richness between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between seasons ($p \le 0.006$).

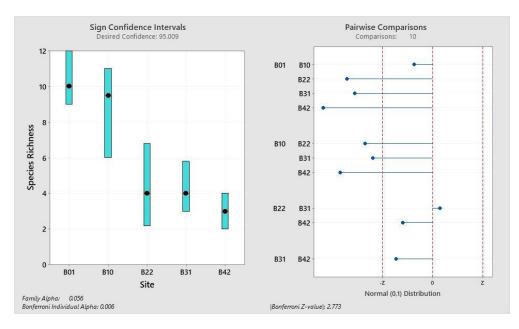


Figure 41. Dunn's multiple comparison test for significant differences in otter trawl species richness between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

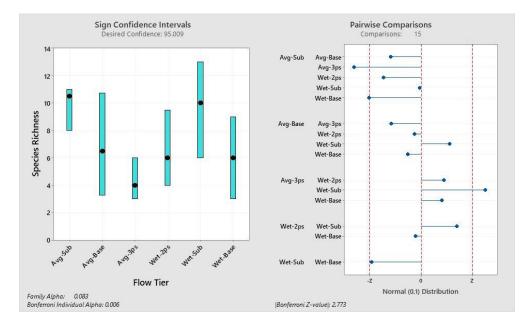


Figure 42. Dunn's multiple comparison test for significant differences in otter trawl species richness between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between flow tiers ($p \le 0.006$).

Among the two sampling methods, Shannon-Wiener diversity indices exhibited very few significant differences between grouping variables. Both gear types were subject to significant differences between sites, although the only statistically significant comparison for the beam trawl collections was that of B01 and B42 (p < 0.001) (Table 100; Figure 68). Among the otter trawl collections, only B10 was significantly different from more than one site- B22, B31, and B42 (Figure 43). The median Shannon-Wiener diversity index for the summer season of beam trawl collections was significantly differences between seasons were detected for the otter trawl collections (p > 0.017), and no significant differences were detected between flow tiers for either sampling method (p > 0.0834) (Table 102; Table 105).

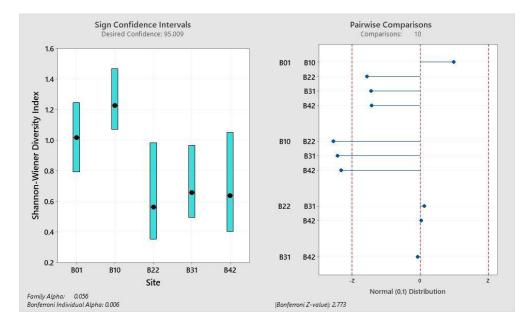


Figure 43. Dunn's multiple comparison test for significant differences in otter trawl Shannon-Wiener indices between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites (p<0.006).

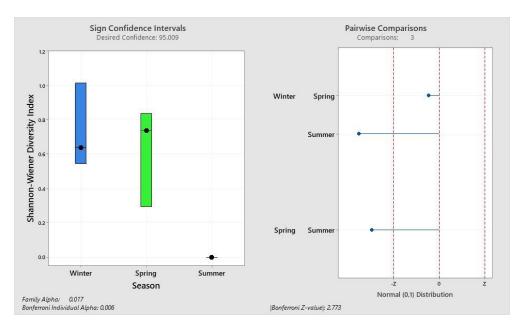


Figure 44. Dunn's multiple comparison test for significant differences in beam trawl Shannon-Wiener indices between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroniadjusted critical Z-value| indicates a significant difference between seasons (p<0.006).

Shannon evenness was the only nekton community metric which did not yield any significant differences in otter trawl collections when grouped by site, season, or flow tier (Table 109;Table 110; Table 111). Shannon evenness between beam trawl collections at B01 and B42 was significantly different (p = 0.0006), though this was the only statistically significant comparison among the ten possible (Table 109; Figure 69). Grouping by season also generated significant differences between beam trawl collections. Like previous tests between seasons of beam trawl data, the spring and winter season were not significantly different from each other, but both were significantly different from the summer season (Figure 45). Grouping Shannon evenness by flow tier did not yield a significant result (p = 0.793) for the Kruskal-Wallis test (Table 111).

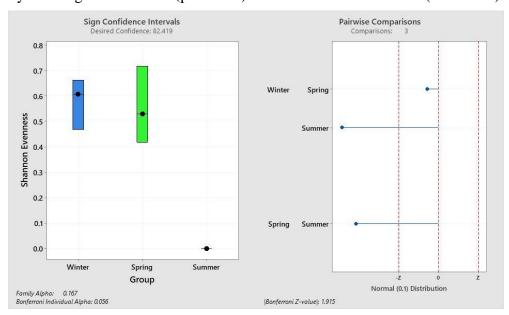


Figure 45. Dunn's multiple comparison test for significant differences in beam trawl Shannon-Wiener evenness between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the /Bonferroni-adjusted critical Z-value/ indicates a significant difference between seasons ($p \le 0.006$).

The Kruskal-Wallis tests performed on the Margalef Richness indices of beam trawl and otter trawl collections revealed significant differences between sites for both

sampling methods. However, the beam trawl collections contained only one significantly different pairing of sites in the form of B01 and B42 (Table 112; Figure 70). The Margalef Richness indices from the otter trawl collections demonstrated a far greater degree of significant grouping between sites. The Dunn's multiple comparison test calculated that B01 and B10 were significantly different from all sample sites but were not significantly different from one another (Figure 46). Margalef richness was also determined to be significantly different between flow tiers. However, only one pairing of flow tiers proved to be significantly different- Avg-3ps and Avg-Sub- while all others were not (p > 0.006) (Figure 71). Margalef richness indices from the beam trawl collections were significantly different when examining season (p < 0.001), with the summer season once again having a significantly lower median Margalef richness than both the winter (p < 0.001) and spring (p = 0.001) (Figure 47).

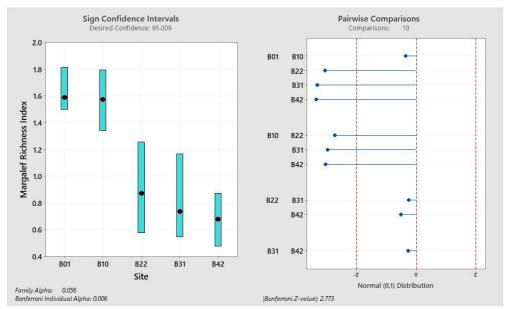


Figure 46. Dunn's multiple comparison test for significant differences in otter trawl Margalef richness indices between sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

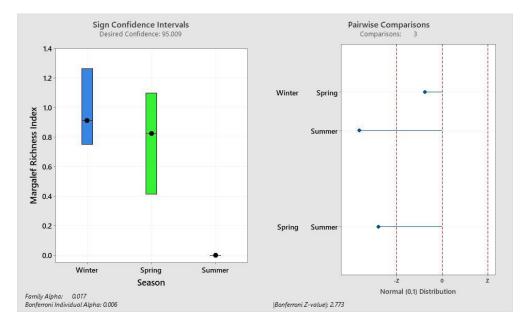


Figure 47. Dunn's multiple comparison test for significant differences in beam trawl Margalef richness indices between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the /Bonferroni-adjusted critical Z-value/ indicates a significant difference between seasons ($p \le 0.006$).

The final community metric subjected to the Kruskal-Wallis test and post-hoc Dunn's multiple comparison test was catch per unit effort (CPUE). The only grouping variable that generated significant differences between CPUE among beam trawl collections was season (p < 0.001). Once again, the summer season CPUE was significantly lower than that of the winter and spring collections (Figure 48). Otter trawl collections subjected to the Kruskal-Wallis test indicated that significant differences in CPUE existed between sites (p < 0.001) and flow tiers (p = 0.007), but not season (p =0.02) (Table 122). CPUE at site B42 was significantly lower than all other sample sites except for B22 (p = 0.048). B22 CPUE was also calculated to be significantly different from CPUE at B01 (p = 0.002) (Figure 49). Only two significantly different pairings between flow tiers were detected; Avg-3ps was calculated to be significantly different from both the Avg-Sub (p = 0.003) and Wet-Sub flow tier (p = 0.001) (Figure 50).

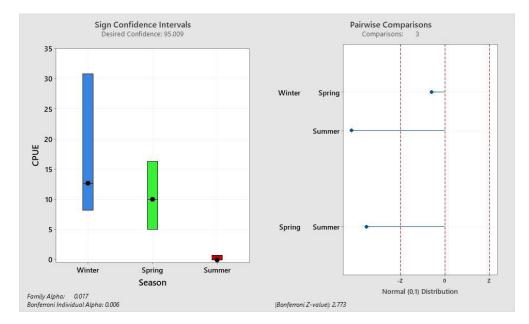


Figure 48. Dunn's multiple comparison test for significant differences in beam trawl CPUE between seasons. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between seasons ($p \le 0.006$).

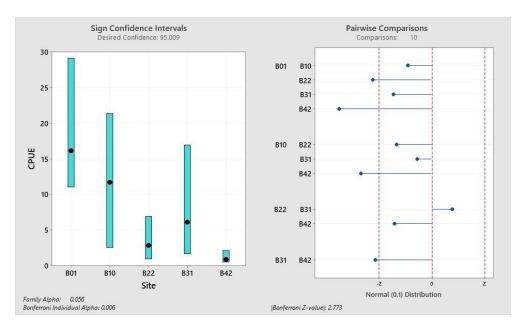


Figure 49. Dunn's multiple comparison test for significant differences in otter trawl CPUE between sites. Bars signify the 95.009% confidence interval of the median ($\bullet =$ median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

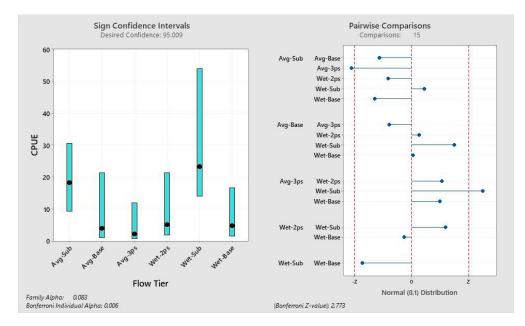


Figure 50. Dunn's multiple comparison test for significant differences in otter trawl CPUE between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between flow tiers ($p \le 0.006$).

DISCUSSION:

Hydrology

Every study conducted on the ecology of the Brazos River since 2012 has sought to quantify how freshwater inflow affects water chemistry and biological communities. The reactions of the various biotic and abiotic factors of interest in the estuary to freshwater inflow have been extensively analyzed throughout the years, and the consensus is that the lower Brazos River is a highly dynamic and diverse ecosystem prone to temporal and spatial shifts in water quality and nekton communities. However, these conclusions stem mostly from the indirect effects freshwater inflow has on the river ecology- such as reducing salt wedge intrusion, and thereby limiting disbursement of marine species into the estuary- rather than how flow itself is a direct contributor to the variability of the ecosystem (Bonner et al. 2017; Greenwood et al. 2007). In addition to continuing the analysis of the influences of freshwater inflow on biological communities and water chemistry in the Brazos estuary, this study also sought to describe the normal range of variation in hydrology and classify the sampling history in the Brazos estuary based on observed trends and differences in river discharge.

Long-Term Temporal Variation

The Brazos River has a low annual average discharge despite being one of the largest watersheds in Texas and the southern United States (Kimmel 2011; NOAA 1990). A total of 53 years has passed from the time the USGS gage #08116650 was deployed and the completion of research for this study. Five of those years did not have complete data to compute average annual discharge, but the remaining for analysis was sufficient to visualize and understand the typical temporal patterns in hydrology of the lower Brazos. There were 26 years from 1967 to 2019 that exceeded the reported mean average annual discharge of 7,400 cfs (NOAA 1990). The maximum number of consecutive years

to exceed this average discharge value was five, and occurred from 1973 to 1977, and 2015 to 2019.

The absence of an official standard for flood conditions and the dynamic nature of freshwater inflow in the lower Brazos makes it difficult to determine when flow could be categorized as abnormally high. Since currently accepted flow tier standards were based on daily average discharge, this was determined to be an appropriate metric of data for assessing extreme conditions as well (TCEQ 2014). The empirical rule was used to determine the cutoff for daily average discharge conditions that could be considered normal. With the outlier standard for daily average discharge equating to 33,869.90 cfs, a total of 1,068 days has been confirmed to having a daily average discharge value greater than the extreme flow standard. The histogram of extreme events was more revealing as it showed the average number of days in a year that experience these flow conditions is only 21.69 days. Only 15 out of the 51 years that have at least partial data to compare to these standards exceeded the mean number of days with extreme flow. Six of those 15 years occurred since 2004, and four of those years occurred within the sampling history of the study (Figure 6).

Although the year 2017 did not meet this classification, the landfall of Hurricane Harvey made significant contribution to the days with extreme flow for that year. Hurricane Harvey also produced one of the wettest months of August on record in the lower Brazos watershed- a huge deviation from the norm since August typically yields the lowest discharge values (Figure 5; Figure 7). Prior to the commencement of the Miller study, Texas endured one of the worst recorded droughts in the state's history (Miller 2014; Nielsen-Gammon 2012). The initial effects of the drought began in October 2010, and persisted up until mid-2012 (Nielsen-Gammon 2012). However, the effects of the drought on the Brazos River could still be observed as late as mid-2013 (Figure 4). This drought event is also the reason why the year 2011 was the only year with not a single daily average discharge value above the mean daily average discharge of 8,394.02 cfs. This year also had the lowest number of days over the median daily average discharge of 3,190 cfs- only five days during that year were equal to or greater than this value (Figure 6). The analysis of extreme flow throughout the years, as well as the extreme weather events that have occurred and no doubt influenced much of the data collected during this study all provide evidence that there are significant shifts in climate occurring throughout the Brazos watershed and are affecting the normal variations in freshwater inflow throughout the year (Nielsen-Gammon 2012; Van Oldenborgh et al. 2017). If the trend of extreme flow continues, it seems likely that variation in water quality associated with different flow tiers will become more significant and have greater impacts on all areas of the water column. In addition, the species compositions of benthic nekton communities for different flow tiers are also likely to become more dissimilar to each other as greater frequency of high discharge events limits the movement of marine and estuarine species due to decreased salinity regimes.

Seasonal Variation

Further proof of short-term hydrological shifts was provided from the seasonal analysis of daily average discharge. Dunn's multiple comparison test calculated the median daily average discharge during the spring and winter seasons from 1967-2019 to be significantly higher than 2011-2019. In addition, while all three seasons were determined to be significantly different from each other within the recording history of the USGS gage, the daily average discharge of the spring and winter seasons were not significantly different from one another during 2011-2019. A trend that was consistent throughout the seasons was greater daily average discharge during the spring season, with winter taking second place, and summer typically having the lowest daily average

discharge values (Figure 9). These trends were within expectations of the regional climate patterns in the northern Gulf of Mexico (Wagner and Austin 1999)

Annual Variation

When each month was statistically compared using the Kruskal-Wallis tests and proceeding Dunn's multiple comparison tests in the different time periods, further disparity was revealed. The confidence intervals of the median daily average discharge were far larger during 2011-2019 than 1967-2019, and as a result the number of significantly different comparisons between months was larger. Dunn's multiple comparison test between median daily average discharge of each month of the year revealed 49 significantly different comparisons during 1967-2019, compared to 32 out of a possible 66 during 2011-2019. The larger confidence intervals could merely be the result of a smaller dataset, but the results of the analysis between each year contradict this (Figure 7). A larger confidence interval of the median daily average discharge is indicative of higher variability within the year. This is further supported by confidence intervals in the early half of the sampling history suffering from the 2011 drought being much smaller than those in the latter half which were significantly wetter years. This pattern seemed to persist when daily average discharge values of each year were compared by season. The summer season had the most significantly different comparisons from 2011 to 2019, even though this season experiences consistent and decreased river discharge (Figure 10). On the other hand, the winter season had the fewest significantly different comparisons at only 25 out of 36 possible (Figure 11). What can be inferred from these results is that variability in river discharge is increasing as time passes, and the greatest frequency of this variation is likely to originate during the summer season- which constitutes the entirety of the hurricane season in the Gulf of

Mexico. In addition, although many patterns between months and seasons remain relatively consistent, there is still a large margin for change.

Linear Modeling of Downstream Discharge

The results of the linear models predicting field discharge directly above TCEQ segment 1201 from continuous and daily average discharge values from the USGS gage were not within expectations. None of the reports prior to this study attempted to quantify the linear relationship between discharge measured in the lowest portion of the nontidal Brazos River, and the discharge values measured at the same time over 100 kilometers upstream (Bonner et al. 2017; Bonner et al. 2015). The results of the game camera experiment seemed to indicate that the water being measured at the gage could take anywhere from 6 to 24 hours to reach the areas of the river in sight of the cameras (Table 59; Table 60). As a result, it was hypothesized that daily average discharge would be a more robust predictor for discharge within TCEQ segment 1201. However, the results of the linear regression analysis indicated that despite the gap in time it takes for freshwater at Rosharon, TX to reach the Brazos estuary, continuous discharge is just as effective at predicting discharge downstream as daily average discharge is. In fact, the analysis clearly showed that continuous discharge model to be slightly more accurate with an (\mathbf{R}^2) value of 0.8571 compared to the daily average discharge model which was 0.8561 (Figure 13).

These models are somewhat biased because the sample days during which the field discharge values were collected were all during days where the continuous discharge did not exceed 20,000 cfs for several days. This was done on purpose for two reasons: the first being safety; flows exceeding 20,000 cfs would make upstream travel more difficult due to stream velocity and a higher risk of floating debris. Monitoring the continuous discharge at the USGS gage was the simplest way to ensure sampling

occurred when flow was not too high, and it was relatively stable. The second reason sampling occurred during flows of less than 20,000 cfs was to ensure that the data for each part of the protocol could be collected. If the flow was too high, the water quality measurements would be less accurate since the river would carry the sonde further downstream rather than let it remain relatively static in mid-water. In addition, river discharges above 20,000 cfs would have made otter trawl collections nearly impossible due to the amount of drag the trawl creates when towed upstream. Finally, measurement of field discharge above TCEQ segment 1201 would have been more challenging in high flow conditions since the ACDP mounted on the hydroboard needs to be towed several times perpendicular to the flow roughly on a transect.

The results of the game camera analysis could indicate the lack of samples taken during significantly higher flow may weaken the predictive power of the linear models, but there is a degree of hypocrisy in making this conclusion. The time estimate of water from Rosharon reaching the estuary is reliant on photo series taken during deluge events. For changes in water levels at the Middle and Lower sites to be discernible from the photos, the freshwater inflow would need to exceed the changes in water level caused by the shifting tides. These changes in water height would need to occur relatively quickly-within a maximum span of a few days- and in great magnitudes- greater than 5,000 cfs. Such rapid and dramatic changes are quite rare; there were approximately eleven events from August 3rd, 2018, to December 9th, 2019, that spanned anywhere from one to three days when changes in water height were significant enough to notice in the photos, and cross reference continuous discharge and gage height values with the TROLL data from the continuous sites. Events such as these could certainly decrease the reliability of using USGS data to predict downstream discharge, but since they are so uncommon, it is

unlikely that measurements taken during the occurrence of such events could sufficiently impact the correlation between USGS discharge and discharge measured downstream.

Water Quality

Many of the analyses performed on the water quality data represent a continuation and expansion of data processing and investigation into the effects of freshwater inflow on the physiochemical environment of the Brazos estuary. Previous reports acknowledged data gaps and limited scope of sampling in each year of study and recommended further sampling to corroborate preliminary conclusions and provide new opportunities for further research.

Continuous Monitoring

Although the continuous monitoring of water quality using HOBOs and TROLLs has been ongoing since 2014, no attempts have yet been made to utilize the data for time series analysis or regression analysis with river discharge (Bonner et al. 2017; Bonner et al. 2015; Swanson 2019). The results in this paper represent the first time the data collected using these types of monitoring gear in the lower Brazos River has faced any form of statistical scrutiny rather than simple observations of trends. The continuous data collected every 15 minutes from the monitoring gear would undergo quality control so that any data suspected to be recorded during problematic conditions- such as not being submerged or buried in sediment- could be excluded from the analysis. This continuous data would then be used to compute daily average values to compare to daily average discharge. The reason that the variables would only undergo analysis after being converted to daily mean values relates to the normal diel patterns of each variable. Temperature and Dissolved Oxygen (DO) are naturally going to be higher during the middle of the day and lower at night, while salinity and water depth are correlated with tidal shifts (Day et al. 2012; Mitsch et al. 2015; Mitsch and Gosselink 2015).

For any predictive models between river discharge and continuous monitoring data to be reliable, any discharge values would need to reflect the same time scale and location as the data recorded downstream. The results of the game camera time lapse experiment and linear modeling of field discharge are supportive of the hypothesis that continuous discharge data could not only be used for predicting downstream field discharge taken at the same time, but also for any other variables that exhibit a strong correlation with freshwater inflow (Figure 13; Figure 59; Figure 60). However, because many of these variables are sensitive to not only time of day but are also correlated with other metrics of water quality, daily average discharge was determined to be a more robust predictor since pairing it with daily averages of water quality variables would account for the subtle changes and diel patterns throughout the entire day (Mitsch and Gosselink 2015). The results of the Pearson correlation analysis supported this hypothesis, as the correlation coefficients between daily average discharge and the water quality profile data that was also recorded on the HOBOs and TROLLs- temperature, salinity, depth, and DO- all had slightly higher correlation coefficients than what was calculated between those same variables and continuous discharge from the USGS gage (Figure 31; Figure 32). Each mean was calculated from each continuous measurement taken every fifteen minutes, making a maximum of 96 continuous measurements to calculate the daily mean. However, since the monitoring gear was subject to interference from the environment, every single continuous measurement could not be retained for calculation, which meant that many daily mean values calculated were the result of incomplete data. However, plotting the continuous data against the daily average values and corresponding discharge values revealed that these discrepancies had little impact on the time-series data, and with far fewer values to process, made the analysis more manageable (Figure 63; Figure 64; Figure 65; Figure 66).

Plotting daily average temperature against daily average discharge revealed no obvious relationship between the two variables, and the Pearson correlation analysis confirmed this (Figure 14; Figure 31; Figure 32). It was hypothesized that some form of correlation should exist between the two variables since it has been proven that season has a significant impact on both (Greenwood et al. 2007; Wagner and Austin 1999). Miller (2014) showed that throughout the course of a year, water temperatures followed the pattern of a parabola at all sample sites, and these patterns could also be observed in the long-term monitoring of temperature via HOBO (Figure 63). This observed relationship made it plausible a quadratic regression fit could be used between Julian day and daily average temperature in order to create a predictive model for water temperature in the estuary. The resulting models all exhibited strong (R^2) values, and the overlaying of seasons for each data point provided further evidence of the relationship between time of year and water temperature (Figure 14). Miller (2014) also used the Kruskal-Wallis test and Dunn's multiple comparison test post-hoc in order to show that river kilometerdistance from the mouth- had no significant effect on differences in water temperature. These conclusions were the justification for the creation of a quadratic model between Julian day and water temperature using data from all continuous sites (Figure 15). The theory was that if no significant differences between water temperature exist between sites, then a single model could be just as useful for predicting water temperature as a series of model for each site would be. The results of the two-way ANOVA for temperature supported the results of the nonparametric tests conducted by Miller (2014) and therefore gives statistical evidence that creating linear models for predicting water temperature for each site is unnecessary (Table 56). However, since daily average temperatures often represented an incomplete series of continuous measurements, the

usage of any model presented in this study for the purpose of predicting river temperature should be treated with caution.

Freshwater inflow has a more significant effect on water salinity between sites due to increased river discharge limiting the migration distance of the salt wedge upstream and increasing vertical mixing of more saline water at the bottom with oligohaline water near the surface (Greenwood 2007; Guenther and MacDonald 2012; Stevens et al. 2013). The inverse relationship between salinity and freshwater inflow was expected to be seen at all sites prior to the construction of the linear models between daily average discharge and daily average salinity (Figure 64). Though the raw data did not appear to be a good candidate for linear regression analysis, the application of a log₁₀ transformation circumvented this issue (Figure 16). However, what became apparent through the log transformed models was the varying degrees of magnitude that freshwater inflow affected daily average salinity, which could also be seen from the non-transformed scatterplots and hydrographs (Figure 16; Figure 64).

The (R^2) values decreased substantially as distance from the river mouth increased, which is likely since the relationship between salinity and flow is not perfectly linear (Figure 16). The Lower site could experience shifts in salinity as great as 25 ppt within the span of a few days, whereas within the same time, the Middle site may only drop as much as 2 ppt, and the Upper site may not exceed 1 ppt for several weeks prior or after (Figure 64). The effects of freshwater inflow on salinity are far greater when the salinity is higher, and salinity will be significantly lower when the site is further upstream and beyond the reach of the tidal influence (Mitsch and Gosselink 2015). As a result, the use of a linear regression model for predicting salinity downstream- even for sites closer to the mouth- is likely not very accurate. The use of the exponential decay function in nonlinear regression analysis proved to be much more accommodating for the Middle and

Upper sites, and the disparity between the standard deviations for each model was significantly reduced (Figure 16).

A similar pattern was observed when performing linear regression analysis on relative depth recorded from the paired Level and Baro TROLLs. Although the daily average depth and daily average discharge were significantly correlated to one another, and the linear model yielded high (R^2) values for each site, these linear models should not be relied upon due to the nature of river depth. Every river has a carrying capacity for volume of water it can accommodate, and when this capacity is exceeded, it results in flooding (Day et al. 2012). This means that there is a finite amount of water that can be in the river without the water spilling over the banks, and once flood stage is reached, the maximum depth of the river cannot go any higher. Different sections of the river experience flooding at different times because while some areas of the river may be shallower, they can be significantly wider with greater bank slopes. This phenomenon was observed during October 2018, when tremendous precipitation in the upper Brazos watershed led to flooding within TCEQ segment 1201. The Middle and Upper sites both experienced overbank conditions and burial due to increased sediment loading that prevented gear retrieval until February of the following year. However, within that same time, the Lower site experienced far less sediment loading on the banks, and no recorded instances where the freshwater inflow rose above the banks (Figure 58). The profile of the river topography near the Lower site is much wider than it is further upstream, which means larger volumes of water can be contained within this area of the river without substantially increasing the water levels. This could be observed in the scatterplots between daily average depth and daily average discharge at the Lower site and even at the Middle site, but this was clearly not the case at the Upper site (Figure 17). For this reason, a sigmoidal growth curve was used in nonlinear regression analysis in order to

address these hydrological facts. Even though the time series plots at the Middle and Lower sites do not follow the sigmoidal curve as well as the Upper site, this model should still be used for using daily average discharge to predict daily average depth because patterns observed at the Upper site are just as likely to occur downstream (Figure 58; Figure 65).

The linear regression analysis of Dissolved Oxygen proved to be more complicated as the initial modeling between daily average discharge and daily average DO did not reveal any linear correlation between the two (Figure 18). However, the time-series graph of the DO data with a hydrograph of the river discharge seemed to contradict these results (Figure 66). In addition, the results of the Pearson correlation matrix for bottom water quality clearly indicated there was a significant correlation between discharge and DO (Figure 31). The variable to exhibit the strongest significant correlation with DO was temperature, so this was the predictor variable chosen for simple linear regression analysis (Figure 18). Although the regression models proved to be a good fit, multiple linear regression analysis was also performed to determine if the addition of daily average discharge could increase the (R²) value, decrease the standard deviation, or both. This decision ultimately proved to yield more significant results, as the multiple linear regression model had both higher (\mathbf{R}^2) values and lower standard deviations of the residuals (Table 4). These results are consistent with how DO levels change within the river. As water temperatures increase, the solubility of oxygen decreases, and therefore decreases DO levels in the water, which is why hypoxic conditions are so common during the summer season (Day et al. 2012; Justus et al. 2014). However, increased freshwater inflow can disrupt this negative trend by increasing vertical mixing and distributing more oxygenated water near the surface to the bottom of the water column, as well as bringing cooler water to the surface to increase DO retention

(Bonner et al. 2017; Day et al. 2012). These results indicate that a predictive model for DO in the lower Brazos would be more accurate with the implementation of both water temperature and discharge data, rather than a single variable (Table 4). Multiple linear regression analysis for DO had been conducted from measurements taken from the profile, discharge values, and river kilometer, but the resulting model did not explain as much of the variation in DO as the current model (Bonner et al. 2017).

Water Quality Profile

A topic of interest that has been thoroughly tested since the advent of the BBASC recommendation reports is the spatial variation of water quality within the Brazos River, and if the effects of freshwater inflow are independent of the spatial differences between sample sites. The use of the two-way ANOVA has been used previously to test for interaction effects between river kilometer and flow tiers both by using combined profile measurements from each site, as well as examining individual measurements from the water column (Bonner et al. 2017; Bonner et al. 2015; Miller 2014). Bonner et al. (2015) only used profile measurements from the surface, middle and bottom, because these were the only measurements taken by Miller (2014) for comparison. Both reports to the Texas Water Development Board (TWDB) only utilized the two-way ANOVA for salinity and DO data (Bonner et al. 2017; Bonner et al. 2015). In addition, both reports suffered from having smaller sample sizes of water quality data, and the results of the normality test for the current study suggest that the analyses run in previous years were in greater violation for the assumptions of the ANOVA. The current study utilized all five profile depth measurements for the two-way ANOVA in order to increase the sample size and provide a more extensive range of values to represent the physiochemical environment at each site and during each flow tier. In addition, every water quality variable that was

measured with the sonde- except for specific conductivity and DO %- were tested for differences in means between sites, flow tiers, and an interaction between the two groups.

The results of the two-way ANOVA for water temperature revealed no significant differences between sample sites (Table 56). The same conclusion was drawn by Miller (2014) through the usage of the Kruskal-Wallis test. The null hypothesis for no significant differences between temperature means of flow tiers was rejected, but Tukey's pairwise comparisons did not generate significant groupings of flow tiers with detectable patterns (Table 56). The groupings that were generated were primarily between flow tiers that had samples taken during at least two seasons, and with a similar number of samples taken for each season (Table 2). The flow tiers that formed individual significant groupings were primarily those with samples only representing a single season such as Wet-2ps. These types of groupings also influenced what flow tiers yielded the highest mean temperatures. The Wet-2ps flow tier had the highest recorded mean temperature among all the flow tiers at 31.45 °C, but this is likely a result of only two samples being taken during this flow tier, both of which occurred during the summer (Table 56). This is suggestive that the adopted flow tiers by TCEQ are effective in distinguishing differences in water quality while accounting for season, but only if the samples collected for these flow tiers includes representatives from each season (TCEQ 2014).

The results of the two-way ANOVA for DO reveal that both spatial differences and differences in flow tiers could explain the variation in mean DO independently, but not in an interactive model. The highest mean DO was recorded at B42 with a value of 7.307 mg/L and remained relatively high throughout the upper river and at B01. The lowest mean DO values were typically recorded at the middle sites- B10 to B22- with the lowest recorded mean DO at 5.89 mg/L from B10 (Table 57). These results corroborate

the findings made by Bonner et al. (2017), and it was suggested that this was related to the stability of the salt wedge. The greatest variations in salinity typically occurred within the middle sites since they are both far enough from the GOM to be impacted by freshwater inflow, yet far enough upstream to experience great upticks in salinity during increased tidal heights (Bonner et al. 2017). Bottom DO and bottom salinity have a significant negative correlation with each other, so the presence of a stable salinity gradient at most of the sample depths was likely to result in the low DO readings in this region of the river (Figure 31). The significant groupings between flow tiers showed that the base flows were distinct from all other flow tiers (Table 57). These groupings could be the result of the base flow tiers possessing the highest mean daily average discharge values for their corresponding sample dates (Table 2). There is ample evidence from the current study to demonstrate the positive correlation between DO and freshwater inflow, so these results provide clarity to the significant differences observed (Table 4; Figure 31).

The results of the two-way ANOVA for Turbidity and Secchi disk transparency were almost entirely within expectations. Secchi disk transparency followed an unbroken trend of decreasing visibility from B01 to B42 (Table 60). For turbidity the trend of decreasing mean was not perfectly linear, as B15 ranked above B25 and B05 ranked above B10 for higher mean turbidity readings (Table 58). This broken pattern of turbidity is not fully understood, as both the listed sample sites are not near bends in the river, and therefore should not be subjected to increased stream velocity stirring up sediment from the bottom and the banks (Figure 1). The patterns in flow tier were also easy to interpret and expect; subsistence flows yielded greater Secchi disk transparency and decreased turbidity. The greatest mean Secchi reading was 0.267 meters at B01, and 0.358 meters for the Avg-Sub flow tier, with the corresponding mean turbidity values at

33.685 NTU and 19.542 NTU respectively (Table 58; Table 60). Secchi disk clarity was also higher during average hydrological conditions than wet, and base flows were clearer than pulse flows- except for Wet-Base. As river discharge increases, the amount of sediment being transported downstream will increase, and therefore reduces visibility in the water column. Pulse conditions yielded higher mean turbidity values, and wet conditions were also more likely to increase turbidity. The greatest mean turbidity values were calculated to be 141.473 NTU for Avg-3ps, and 114.465 NTU for B42 (Table 58).

Despite both variables exhibiting strong correlations between river kilometer and river discharge, neither exhibited a significant interaction effect when tested with the two-way ANOVA (Table 58; Table 60). One explanation for this could be that although variation between each group exists, these variations are not significantly high enough to yield a detectable interaction effect between the two. Another problem that is directly linked to turbidity is that the sonde measurements could vary sporadically- especially on the bottom- and stabilization of readings sometimes yielded questionable measurements. Although these technical difficulties did not constitute most of the turbidity measurements, they were not uncommon, and likely a major source of data error.

Thalweg depth also did not exhibit a significant interaction effect between site and flow tier despite the significant differences detected within each group. Miller (2014) concluded that maximum depth increases as distance from the mouth increases, but these observations were made from only four sites as opposed to the current nine. The groupings generated from Tukey's pairwise comparisons did not reveal any obvious spatial patterns; the greatest average thalweg depth was recorded at B15 with a mean total depth of 8.08 meters and followed closely by B42 at 7.51 meters. The lowest mean depth was recorded at B25 at a depth of 4.824 meters. In direct contrast to the site groupings, groupings for the flow tiers followed an almost unbroken pattern. The maximum mean

thalweg depth was 7.169 meters and was calculated for the Wet-2ps flow tier. As flow tier went from pulse, to base, and to subsistence, mean depth decreased. Flow tiers classified under wet hydrological conditions also had greater recorded depths than those classified as average. The lowest average thalweg depth was calculated for the Avg-Base flow tier at 5.766 meters (Table 59).

The two-way ANOVA for salinity was the first case of an interaction effect between site and flow tier being detected for any water quality variable (Table 61). These results were consistent with the analyses performed in 2015 and 2017 despite both reports having smaller sample sizes and using fewer profile measurements during the ANOVA (Bonner et al. 2017; Bonner et al. 2015). The overall trends were identical as well; sites that were further upstream exhibited lower salinity readings at all profile depths, and flow tiers associated with increased daily average discharge yielded lower mean salinities (Table 7; Table 8; Figure 24; Figure 25; Figure 31; Figure 32). The highest salinities reported always occurred between B01 and B10, with the maximum mean salinity recorded at 16.280 psu for B01 (Table 7; Figure 24). The maximum mean salinity among flow tiers was 13.378 psu for the Avg-Sub flow tier (Table 8). Since an interaction effect was detected, a series of reduced, one-way ANOVA tests and Tukey's pairwise comparisons were performed in order to assess site differences within each flow tier, and flow tier differences within each site. The differences between flow tiers at each site were difficult to interpret, but some patterns could be extracted. Mean salinity for the Avg-Sub flow tier was significantly different from mean salinity for the Avg-3ps flow tier at all sites. The Wet-Base mean salinity was significantly different from the Avg-Sub mean salinity at all sites except B01. In addition, the only instance where the Avg-Sub flow tier was significantly different from the Avg-Base flow tier was at B36 and B42 (Table 63). The spatial differences between flow tiers were far more apparent and

consistent with results from previous studies. B01, B05, and B10 were all significantly different from both B36 and B42 for each flow tier category. These same three sites were also significantly different from every site upstream of B22 except during the Avg-Base flow tier. The Wet-Base flow tier exhibited the greatest variance among all flow tiers with a total of 22 significantly different pairwise comparisons out of a possible 36, while the Avg-Base exhibited the lowest degree of variance with only seven significantly different comparisons (Table 64). The low variance was unexpected since mean salinity during the summer is significantly higher than during the spring or winter (Miller 2014).

The second variable to have an interaction effect detected between site and flow tier was pH- which had never been subjected to this type of analysis in previous years. Miller (2014) did not find any significant differences between mean at the different sites using the Kruskal-Wallis test, so these initial results are cause enough for surprise. The highest mean pH among flow tiers was Wet-2ps with a value of 7.824 while among sites it was B01 at 7.86. There were no recorded cases throughout the entire sampling history where recorded pH fell out of the acceptable range of 6.5-9.0 (TCEQ 2012). Average flow tier conditions exhibited a transition to more neutral pH from pulse to subsistence flow tiers, while the inverse was true during wet conditions. The lowest mean pH values were recorded for the Avg-3ps flow tier at 7.63, while the lowest between sites was at B22 with a value of 7.70 (Table 7; Table 8). The distribution of mean pH between sites followed a similar pattern to what was observed for DO concentrations- higher values in the upper river and near the mouth, while the lowest values were typically recorded at B10 to B22 (Table 7). It's also interesting to note that the Pearson correlation analysis calculated a significant correlation between pH and DO (Figure 31; Figure 32). The reason for this trend could be related to the stability of the salt wedge intrusion in this region of the river, just as it was the case for DO (Bonner et al. 2017). However, the

logarithmic scale on which pH is recorded is significantly different than the scales of other water quality variables, and any observed relationships ought to be carefully classified. Even the results of the two-way ANOVA should be taken with caution since all studies that utilized this test violated at least one assumption of running the ANOVA. The site with the fewest significant differences in mean pH between flow tiers was B22, while the site with the greatest variation was B42 (Table 65). The Wet-2ps and Wet-Base flow tiers did not exhibit any significant differences in pH between sites, and the Avg-Sub flow tier had the greatest variation between sites of any flow tier (Table 66).

Principal component analysis (PCA) was conducted by Miller (2014) and concluded that 49.1% of sample variation in bottom water quality could be explained by temporal variation while 28.8% of the variation could be explained by spatial differences, based on the coefficients for each water quality variable used in PCA- temperature, salinity, DO, daily average discharge, and total depth. In the current study, total depth was excluded from the PCA since the ANOVA results did not reveal any obvious trends in river kilometer, and because total depth was highly correlated with discharge (Figure 17). In addition to using bottom water quality from 2014 onwards for PCA, the surface water quality was also subjected to PCA. The purpose of this was to reach a conclusion as to what variables drive the variation between samples taken from all areas of the water column that are sampled for nekton. The greatest contributors to the eigenvector of PC1 for bottom profile were DO (0.613) and salinity (-0.519). Both variables are significantly different between sites and directly related to the depth and location of the salt wedge in the estuary, but the prominence of the DO coefficient is also suggestive that seasonal effects are a part of PC1 (Figure 20; Figure 24; Figure 25; Table 67). This could be seen in the PCA plot where a rough horizontal gradient could be seen between seasons. For PC2, the highest coefficients were temperature (0.641) and daily average discharge

(0.635), and PC2 accounted for 34.9% of the variation between samples (Table 67). PC2 is also likely a combination of grouping variations since the contribution of temperature would be directly linked to seasonal changes, whereas the contribution of discharge would be more indicative of shifting flow regimes.

PC1 and PC2 for the current PCA model accounted for a cumulative total of 81.4% of the variation whereas the Miller (2014) model accounted for 77.9% of the variation (Table 67). This is suggestive that using only the four variables chosen in the current PCA is sufficient for explaining sample variation. Spatial differences explained a greater proportion of variation in water quality from the samples taken since 2014, whereas during 2012, it was season (Miller 2014). Since there were only four sample sites utilized by EIH prior to 2014, it's possible that a smaller sample size and a smaller range of sample sites undermined the importance of spatial differences in the estuary in the Miller (2014) study. This would have been especially true with DO, since a great degree of variation in oxygen levels occurs within the middle sites, but with most of them absent in 2012, the extent of the variation in DO due to spatial differences would have been significantly reduced, and likely give more weight to its role in contributing to seasonal differences (Figure 20).

The patterns observed in the PCA of the surface profile data were more consistent with the results and conclusions outlined by Miller (2014). The DO coefficient was the largest contributor to the eigenvector for PC1 and was inversely related to temperatureall clear signs of the relationship between temperature and DO during seasonal changes. There was also a very clear horizontal gradient between samples when grouped by season, which provides further prove that the likely source of 44.5% of the variation between samples is season (Figure 29; Table 68). The interpretation of PC2 was equally easy to interpret; with the highest eigenvector coefficient of 0.673 belonging to daily

average discharge, and the second designated for salinity at 0.662, it was clear that the 34.9% of sample variation explained by PC2 was due to variation of freshwater inflow (Table 68). When samples were grouped by flow tier, the vertical gradient of subsistence to pulse flows became apparent (Figure 29). The results of both PCA plots indicate that season plays a role in the variation of water quality at any depth. The variation explained by flow tier is more prevalent at the surface likely since the direct effects of discharge-velocity, sediment loading, etc.- are more significant at the surface than the bottom (Day et al. 2012). The variation explained by spatial differences is likely more important for bottom profile due to the interaction between discharge and the halocline (Bonner et al. 2017). Most salinity readings at the surface did not exceed 10 psu even at B01 during the summer, so any spatial relationships derived from variation in salinity are likely to be reduced in comparison to the bottom profile (Table 7; Table 8).

Nekton Community

Correlation Analysis

The purpose of the correlation analysis was to generate a matrix of significant correlations that could quickly detail all significant relationships between hydrology, water quality and nekton community variables. The water quality measurements were separated based on surface and bottom profile in order to determine whether water quality at the surface or bottom would yield significant differences between correlation coefficients. This was of particular importance when correlating water quality with beam trawl community data since the profile measurements are taken at the thalweg for each site while the beam trawls are conducted on the bank. Although the beam trawl is meant for sampling larval nekton in shallow water, each beam trawl collection is in fact sampling the entire water column in its path (Renfro 1962). Prior to this study, most analyses between nekton communities collected with the beam trawl were reliant on data

collected from the bottom profile (Miller 2014; Swanson 2019). The water quality variable with the greatest correlation between otter trawl and beam trawl nekton community data is salinity (Figure 31; Figure 32).

The results of both the bottom and surface Pearson correlation analysis indicated that the bottom salinity yielded higher correlation coefficients between all beam trawl data that was determined to be significantly correlated ($p \le 0.05$) with salinity (Table 71; Table 73). These results are unusual because the maximum salinity at the bottom near the bank would never approach salinity levels at the thalweg- particularly at sites closer to the mouth. In addition, all otter trawl data that was significantly correlated with salinity had higher correlation coefficients with surface salinity than the bottom (Table 72; Table 74). Though the differences in these correlation coefficients are not very large (< 0.15), it is nonetheless confusing as to why this was observed; benthic nekton should theoretically have a higher correlation with water quality at the same depth they were sampled.

One theory that could explain this phenomenon could be the vertical migration of the salt wedge in the river. During periods of increased flow, the halocline in the estuary is forced further downstream, and the freshwater rises over the denser layer of saline water, forcing it closer to the bottom. However, when freshwater inflow decreases, this pattern is reversed, and the salt wedge travels further upstream and closer to the surface (Bonner et al. 2017; Day et al. 2012). If surface salinity is higher, then it stands to reason that salinity at all regions of the water column will be higher than average, and therefore would give nekton that are less tolerant to low-salinity conditions a larger roof over their heads. With greater freedom to roam throughout the water column and more conducive conditions for estuarine nekton, this could explain the increased positive correlation with species richness and Margalef Richness for otter trawl collections (Figure 32). Data from beam trawl collections was inversely correlated with salinity, so any relationship with salinity from the thalweg would likely come from the maximum salinity value- which almost always occurs at the bottom. The salinity taken from the bottom is representative of how high the salinity can reach at any point in the river, and if nekton communities targeted with the beam trawl are negatively correlated with this, any values indicating increased diversity would decrease as maximum salinity increases.

Community Similarity

The results of the SIMPER analysis indicated the communities sampled with the otter trawl are more similar between collections for any grouping- season, site, and flow tier- than beam trawl collections. There was never an instance when the percent similarity of beam trawl collections of a single group was higher than the percent similarity of between otter trawl collections between the same group. This could be a result of a very high number of collections with no catch reported; SIMPER analysis cannot compute a value of percent similarity when no community data is available. This would also explain the low percent similarity between beam trawl collections during the summer- there were 15 zero catch collections for beam trawl since 2014, and only one was not recorded during the summer season (Table 33). Otter trawl collections were most similar when grouped by site, with the average similarity of collections between all sites at approximately 33.97%, and collections most similar at B01 with an average similarity of 45.36% (Table 75). The relationship between sample site and community similarity could clearly be seen when plotted using nMDS, with a clear dividing line between the upper and lower sites, and B22 crossing the median between the sites most frequently (Figure 33). This also illustrates the low average percent similarity of B22 collections at only 19.94% (Table 75). The average percent similarity between otter trawl collections when grouped by season was the lowest among the groups tested at

26.97%, with collections most similar during the summer season at 32.06% (Table 77). Average percent dissimilarity in pairwise comparisons between seasons was also substantially higher than comparisons between sites and flow tiers. Beam trawl collections exhibited the opposite trend of having higher average percent similarity between seasons, and lowest average percent similarity between sites (Table 76; Table 78). These preliminary results suggested that seasonal variation is more important for shoreline nekton communities while spatial variation plays a bigger role in influencing nekton communities near the bottom of the thalweg.

The results of the ANOSIM tests supported these initial conclusions for both otter trawl and beam trawl collections. The null hypothesis for an ANOSIM test assumes that the similarity between two groups is greater than or equal to the similarity within each group. For seasonal otter trawl collections, the null hypothesis for each comparison is rejected, and greater similarity between nekton collections grouped by season is not concluded (Table 82). The null hypothesis for seasonal comparisons between beam trawl collections is also rejected, which implies that greater percent similarity of collections occurs within season rather than between seasons (Table 85). Many of the ANOSIM tests between flow tiers were not significant (p > 0.05) for otter trawl collections, which suggests that with greater similarity between groups than within, that flow tier is not as influential on community composition as season or site location (Table 83). This can be observed and corroborated through the nMDS plot, where there are very few observable patterns in collections grouped by flow tier (Figure 35). The average dissimilarity between flow tiers for beam trawl collections was lower than those of the otter trawl collections, which is likely why a greater frequency of the ANOSIM results were significant ($p \le 0.05$) (Table 86). As for site comparisons, only the otter trawl collections between B31 and B42 were determined to be more similar between one another than

within their own classification (p = 0.052) (Table 81). Although the results of the SIMPER analysis revealed that percent similarity of site collections were comparatively high, average percent dissimilarity between sites was substantially higher (Table 75). Conversely, the average percent similarity within beam trawl collections never exceeded 20%, while average percent dissimilarity between sites always exceeded 90%- except between B31 and B42 (Table 84). The ANOSIM results of beam trawl collections grouped by site support this since similarity between B01 and all sites upstream of B10 did not exceed similarity within the sites (p = 0.815). The same was true of comparisons between B42 and all sites downstream of B31 (p = 0.099).

The cluster analysis from the collection taken in the GOM formed groupings primarily based on spatial variation. The collections with greater total catch and greater species richness were typically from G1 and G1U1, and this was likely related to the transport of nutrients from upstream, as well as the vertical mixing promoted by freshwater discharge (Day et al. 2012). The inclusion of G2 in the second highest similarity grouping is indicative that the positive hydrological effects from the river reach as far as two kilometers offshore. Although G1D1 is as close to the river mouth as G1U1, its position further down the coast is likely why collections were not as lucrative and less similar to collections from G1 and G1U1 (Table 87). This is likely related to sediment transport; the Brazos River discharges more sediment into the GOM than any other watershed in the state of Texas (Rodriguez et al. 2000). Otter trawl collections from the river sites exhibited a significant negative correlation with turbidity, so it stands to reason that the same correlation would be observed in the GOM. As sediments from the watershed pour into the GOM, they are carried southwest down the coastline by gulf currents, thereby altering bottom topography and decreasing oxygen levels due to restricting access to sunlight for photosynthesis by phytoplankton communities (Day et al. 2012).

Variation in Nekton Diversity

The results of these tests were further corroborated when the usage of the Kruskal-Wallis and Dunn's multiple comparison test compared calculated community metrics between sites, seasons, and flow tiers. Every community metric for otter trawl collections- total catch, species richness, Shannon-Wiener diversity, Shannon evenness, Margalef Richness, and CPUE- exhibited no significant differences between seasons, which were supported by the results of the SIMPER analysis and ANOSIM tests (Table 92; Table 98; Table 104; Table 110; Table 116; Table 122). However, it's important to note that the lack of significant differences could also be related to how the Kruskal-Wallis test was performed. The family (α) of each test was dependent on the grouping variable used since the objective was to test for significant differences between the medians based on their 95.009% confidence intervals. For the test between seasons, the family (α) was 0.0167 so that the Bonferroni adjusted p-value for post-hoc comparisons would be 0.006. There were cases where the adjustment of the family (α) may have prevented the detection of significant differences- this could have been proved true for comparisons of total catch, species richness, and CPUE (Table 92; Table 98; Table 122). Nevertheless, these results are supported by both the SIMPER analysis and ANOSIM tests, so the decision to adjust the family (α) according to group may still be justifiable.

All community metrics for otter trawl collections- except Shannon evennessproved to be significantly different ($p \le 0.033$) between sites, which further supports the idea that spatial variation is the most important factor for consideration in mid-channel benthic nekton communities (Table 91; Table 97; Table 103; Table 115; Table 121). Only Margalef Richness and Shannon evenness did not show significant differences

between flow tiers for otter trawl collections. This would appear to contrast with the results of the ANOSIM test, but the number of significantly different pairwise comparisons only ranged from one to three out of a possible 15 (Table 110; Table 116). One comparison that always proved to be statistically significant was between Avg-3ps and Avg-Sub. Previous studies within the Brazos River have proven that river discharge has significant impacts on the movement and diversity of nekton species, though most of these studies were conducted in the upper Brazos watershed (Zeug and Winemiller 2008). Proximity to the estuary likely affects the direct impacts of freshwater inflow on nekton communities and is more likely to be linked to indirect impacts due to the relationship of salinity with nekton communities and discharge. Larger sample sizes and greater seasonal representation for flow tiers would be required to definitively conclude if significant differences in community metrics between flow tiers exist or not.

For the beam trawl collections, the results of the nonparametric tests of the various community metrics appeared to be directly inverse of what was observed with otter trawl collections. Every metric tested proved to be significantly different between seasons, with summer always having the lowest median value and being significantly different from winter and spring (Table 89; Table 95; Table 101; Table 107; Table 113; Table 119). Shannon-Weiner diversity, Shannon evenness, and Margalef richness exhibited significant differences between different sites for beam trawl collections, though in each case, the only significantly different comparison was B01 and B42 (Table 100; Table 106; Table 112; Figure 68; Figure 69; Figure 70). This could be a result of having uneven sample sizes since B42 was not sampled during the current study. However, given the huge disparity of salinity between those two sites and the negative correlation exhibited between beam trawl community metrics and salinity, this significant difference detected is likely still valid. In addition, beam trawl community metrics

exhibited no significant differences between flow tiers except for the test on species richness. However, there was only one significant comparison in this case- Avg-3ps and Wet-Sub- and the results of this comparison could likely be explained by the fact that none of the samples taken during the Avg-3ps occurred during the winter season as was the case with Wet-Sub. This likely resulted in an imbalance between median species richness that ultimately led to the conclusion drawn from the significant p-value (Table 96; Figure 67). However, it is also worth noting that none of the flow tiers had equal representation among the different seasons (Table 2). If imbalance of seasonal representation could explain significant differences detected between flow tiers for beam trawl community metrics, then the results should have yielded more significant comparisons between flow tiers. This would have been especially true for flow tiers with larger sample sizes for the summer season like Wet-2ps; the summer season proved to be significantly different from the winter and spring season for every community metric tested among the beam trawl communities (Table 2; Figure 37; Figure 40; Figure 44; Figure 45; Figure 47; Figure 48). Since there were so few statistically significant comparisons between flow tiers despite the unequal sample sizes of seasons, this suggests that the adopted flow tier standards by TCEQ are useful for assessing nekton community health.

The significant differences observed between season are no doubt linked to the life cycle of many marine fish species native to the GOM. Fish such as Gulf Menhaden and Atlantic Croaker spawn during late summer in oligotrophic waters offshore in order to avoid offspring predation (Pattillo et al. 1997). After hatching at the end of summer to early winter, the larval fish journey back towards shore to seek shelter and food in estuaries, salt marshes and wetlands (Soto et al. 1998). The season with the peak recruitment of the previously mentioned fish species occurs during the winter, and this

was quite apparent when the catch data for each species was classified by season (Miller 2014; Pattillo et al. 1997; Soto et al. 1998; Swanson 2019).

Conclusions and Recommendations

The estuary of the Brazos River has continued to prove to be a highly dynamic and variable ecosystem within the upper Texas coast. The analysis of daily average discharge has revealed the normal patterns of variation in hydrology that are needed in order to meet nutrient requirements, and how the last decade of sampling within the river has diverged from the normal patterns of variation (Engle et al. 2007; Orlando et al. 1993). The extreme flow event analysis is indicative that the frequency of extreme events like drought and flooding is becoming higher than it was in previous decades, and these events are not limited to any single month, season, or year. The Kruskal-Wallis test proved useful in confirming that median freshwater inflow is typically higher in the first half of the year from late winter to late spring, while the latter half of the year experiences lower daily average discharge likely due to decreased precipitation until the advent of winter. However, when comparing variation within seasons during the sampling history, it was clear that hydrological input for the Brazos River has not been consistent in recent years. As variation in river discharge on annual and seasonal scales becomes more disruptive and erratic as time progresses, the need for greater oversight of water management and flow monitoring will likely become greater. Continued monitoring of river discharge both within the estuary and from the USGS gage are recommended in order to confirm the plausibility of increased extremity of high and low flow events.

The linear model of daily average discharge with field discharge using a hydroboard-mounted ADCP also proved that despite the distance upstream from the mouth, the usage of automated data from USGS gage #08116650 is very useful and

accurate for predicting flow directly above TCEQ segment 1201. However, since there is a shortage of field discharge readings above 15,000 cfs, it would be advisable to attempt more field measurements during greater discharge events in order to determine if such events negatively impact the strength of the correlation- particularly during high magnitude pulse events (Figure 60).

The use of daily average discharge data from the USGS gage also proved useful in predicting daily average salinity, temperature, DO and depth at the continuous sites. Alternative methods for deploying the HOBOs should be investigated more thoroughly in order to minimize data removal due to burial by sediment. The results of the linear modeling of field discharge with daily average discharge and continuous discharge also suggests that the use of continuous flow data could be used for predicting continuous data from the HOBOs and TROLLs as was initially contrary to what was hypothesized. Another suggestion for future use of this data could be systematic classification of the variables for each measurement taken. Classification could include flow tier, as well as determining if observed conditions are indicative of unfavorable environmental quality such as hypoxia. This data sorting could then be used to determine how frequent such events are, and if they are gradually becoming more frequent and/or severe.

This high degree of variation in flow can prove troublesome for the ecology in the estuary- where all the freshwater inflow ends up. The results of the two-way ANOVAs indicated that variation in flow tier yields significant differences for every water quality variable that was measured in the field. This also proved to be the case in spatial variation between sites- with the only exception being temperature. The most significant result from the parametric tests was the conclusion that spatial variation and flow tier exhibit an interactive effect for variation in mean pH and salinity. This interaction effect has been detected in previous studies despite using a more limited sample size of data

(Bonner et al. 2017; Bonner et al. 2015). This interaction effect is important for consideration when performing any ecological study in the Brazos estuary due to the high number of significant correlations that salinity exhibits with nekton community metrics and other environmental variables (Figure 31; Figure 32). The behavior of the halocline in the estuary its relationship with freshwater inflow is the backbone of the estuarine ecosystem, and at least merits continuous monitoring through the usage of HOBOs. However, because it has been established that the variation in salinity is dependent on both distance from the river mouth and the flow tier, the current protocol of performing depth-interpolated profiles at several areas of TCEQ segment 1201 is necessary in order to properly monitor these changes.

The nekton community analyses indicated that flow tier does account for some of the variation observed in diversity, though these observations are few and likely limited by the small and uneven sample sizes for each flow tier. Spatial variation was shown to have the greatest impact on nekton occupying the deeper sections of the river- likely related to utilization of the estuary for food sources, salinity levels, and marine predator avoidance. Spatial variation is indirectly linked to river discharge because it involves the variation in salinity as distance from the mouth changes- which discharge has a direct correlation with (Figure 31; Figure 32). Seasonal variation accounted for the trends observed in the juvenile and larval nekton communities occupying the shallow waters adjacent to the banks. This is reflective of the life cycle of many marine fishes in the Gulf of Mexico; reaching adulthood in estuaries, spawning offshore during late summer, and the juvenile fish swimming upriver during winter and spring in order to mature in an environment with greater habitat diversity and nutrient supply. Season may control the input of larval and juvenile nekton species, but the results of the Pearson correlation analysis prove that salinity is still critical in the ecology of these communities (Figure 31;

Figure 32). One sample method suggested in the original proposal for the current study was to use seine nets to sample tidal creeks connected to the lower Brazos near B01. It is highly advisable to attempt this method in future research of the Brazos estuary as the costs of performing seine collections in a smaller region would likely be lower than the extensive and widespread sampling conducted since 2012. In addition, this form of sampling could also be useful in determining the movement of larval fish during high flow events. Since the tidal creeks are somewhat separated from the main current of the Brazos River, it seems likely that in periods of extreme flow juvenile and larval fish would seek shelter from the deluges of increased discharge even during peak recruitment periods. The relative isolation from the main current would also make sampling of nekton communities much safer and increase the threshold of river discharge that still allows technicians to perform nekton sampling.

The otter trawl collections performed in the GOM demonstrate that nekton communities are subject to spatial variation, just as they are in the river. Sites closer to the river mouth and upstream of the mouth had greater total catch and species richness (Table 29; Table 34). In order to conclude whether freshwater discharge can affect the distributions of nekton species, further sampling in required. If an additional site could be sampled from both downstream and upstream from the mouth, this could also increase the understanding of the effect sediment loading and river discharge has on nearshore communities. Continued sampling in the GOM would also be useful in determining the correlation between increased river discharge and periods of hypoxia in the nearshore waters. Biological sampling in both the river and nearshore GOM waters still merits continuation simply because the usage of identical methods spanning over four decades has proven that certain nekton species remain to be scientifically documented within the Brazos estuary (Table 29; Table 34).

One final topic for future study was the high abundance of the cymothoid ectoparasite Cymothoa excisa (Figure 62). These parasitic isopods are found throughout the Gulf of Mexico and the eastern coast of South America and are often known as "tongue-eating lice". The reason for this alias is their mode of parasitism; free-swimming adults invade the buccal cavity of a fish, and cause the tongue to atrophy due to prolonged feeding from the blood vessels at the base (Cook 2012). This parasite is known from a variety of host species captured in tropical waters representing at least six different families, including the most common species in the Brazos estuary and the entire Texas coast- the Atlantic Croaker (Joca et al. 2015). The distribution of this parasite and the range of hosts that it will infect is still poorly understood, and research of this parasite in Texas is extremely limited (Cook 2012). Although many studies have used Atlantic Croaker as a species of interest in the research of this parasite, the primary host in the Brazos River was the Star Drum. Beginning on July 31st, 2019, data on the presence of this parasite was added to the protocol in order to document the frequency of parasitism and the host species. The presence of this parasite was only detected at B01 and B10, with far greater abundances of both the parasite and evidence of parasitism occurring at B01. The three host species documented included Star Drum, Atlantic Croaker, and Silver Perch (Bairdiella chrysoura). Among the 24 replicate trawls performed at B01 and B10 from July 31st, 2019 and December 5th, 2019, 305 individuals were determined to have severed tongues, and 40 of these individuals still had at least one parasite present on the gill filaments or in the buccal cavity. This was an interesting development in the current study that unfortunately could not be given proper investigation due to the great importance and necessity of completing sampling for the Brazos River using outlined protocols. However, the scarcity of research on this organism was confirmed by early July 2019, and it was determined that if any data could

be reported regarding this species, it could serve as the basis for any future research targeting the ecology of this intriguing marine parasite.

REFERENCES:

- Able, K. W., D. M. Nemerson, R. Bush, and P. Light. 2001. Spatial variation in Delaware Bay (USA) marsh creek fish assemblages. Estuaries 24(3):441-452.
- Angel, M. V., E. Bousfield, P. Brunei, R. C. Brusca, D. Cadien, A. C. Cohen, K. Conlan, L. G. Eldredge, D. L. Felder, and J. W. Goy. 2005. Common and Scientific Names of Aquatic Invertebrates from the United States and Canada.
- Armstrong, N. E. 1987. The ecology of open-bay bottoms of Texas: A community profile. US Department of the Interior, Fish and Wildlife Service, Research and Development.
- Basterretxea, G., A. Jordi, M. C. Martinez-Soto, and A. Tovar-Sanchez. 2017. Episodic Biogeochemical Variability in a Low-Flow Mediterranean Estuary. Estuaries and Coasts 40(5):1247-1262.
- BBASC, B. 2012. 2012 Brazos BBASC Environmental Flow Standards and Strategies Recommendation Report.
- BBASC, B. 2013. 2013 Brazos BBASC Work Plan for Adaptive Management.
- BBEST, B. 2012. 2012 Brazos BBEST Environmental Flow Regime Recommendations Report.198.
- Bilotta, G. S., and R. E. Brazier. 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research 42(12):2849-2861.
- Bonner, T., J. Duke, and G. Guillen. 2017. Instream Flows Research and Validation Methodology Framework 2016-2017: Brazos River and Associated Bay and Estuary System. Final Report to Texas Water Development Board, 1600012009.
- Bonner, T., J. Duke, G. Guillen, and K. Winemiller. 2015. Instream Flows Research and Validation Methodology Framework: Brazos River and Associated Bay and Estuary System. Final Report to Texas Water Development Board, 1400011722.
- Camacho, S., S. Connor, A. Asioli, T. Boski, and D. Scott. 2015. Testate amoebae and tintinnids as spatial and seasonal indicators in the intertidal margins of Guadiana Estuary (southeastern Portugal). Ecological Indicators 58:426-444.
- Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian journal of ecology 18(1):117-143.
- Clarke, K. R., and R. N. Gorley. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, UK.
- Clarke, K. R., R. N. Gorley, P. J. Somerfield, and R. M. Warwick. 2014. Change in marine communities: an approach to statistical analysis and interpretation, Third edition. PRIMER-E, Plymouth, United Kingdom.
- Cloern, J. E., A. D. Jassby, T. S. Schraga, E. Nejad, C. J. L. Martin, and Oceanography. 2017. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. 62(S1):S272-S291.
- Cook, C. W. 2012. The early life history and reproductive biology of Cymothoa excisa, a marine isopod parasitizing Atlantic croaker, (Micropogonias undulatus), along the Texas coast. University of Texas at Austin.
- Dahm, C. N., R. J. Edwards, and F. P. Gelwick. 2005. Gulf coast rivers of the southwestern United States. Rivers of North America:181-228.

- Davis, S. E., J. E. Cable, D. L. Childers, C. Coronado-Molina, J. W. Day, C. D. Hittle, C. J. Madden, E. Reyes, D. Rudnick, and F. Sklar. 2004. Importance of storm events in controlling ecosystem structure and function in a Florida gulf coast estuary. Journal of Coastal Research 20(4):1198-1208.
- Day, J. W., W. M. Kemp, A. Yáñez-Arancibia, and B. C. Crump. 2012. Estuarine ecology, Second edition. John Wiley & Sons.
- Dinno, A. J. 2015. Nonparametric pairwise multiple comparisons in independent groups using Dunn's test. The Stata Journal 15(1):292-300.
- Doering, P. H., R. H. Chamberlain, and D. E. Haunert. 2002. Using submerged aquatic vegetation to establish minimum and maximum freshwater inflows to the Caloosahatchee estuary, Florida. Estuaries 25(6b):1343-1354.
- Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics 6(3):241-252.
- Dyer, K. R. 1997. Estuaries: a physical introduction, Second edition. Wiley, New York, New York.
- Emitte, J. 1983. A comparative study of two river estuaries. Dow Chemical U.S.A., Freeport, Texas.
- Engle, V. D., J. C. Kurtz, L. M. Smith, C. Chancy, and P. Bourgeois. 2007. A classification of US estuaries based on physical and hydrologic attributes. Environmental Monitoring and Assessment 129(1-3):397-412.
- George, R. R. 2014. Nesting ecology of the Texas diamondback terrapin (*Malaclemys terrapin littoralis*). University of Houston-Clear Lake, Houston, Texas.
- Gobo, A. E., T. K. S. Abam, and F. N. Ogam. 2006. The application of Kruskal-Wallis technique for flood prediction in the Niger Delta, Nigeria. Management of Environmental Quality: An International Journal.
- Gosz, J. 1993. Ecotone hierarchies. Ecological applications 3(3):369-376.
- Greenwood, M. F. D. 2007. Nekton community change along estuarine salinity gradients: Can salinity zones be defined? Estuaries and Coasts 30(3):537-542.
- Greenwood, M. F. D., R. E. Matheson, R. H. McMichael, and T. C. MacDonald. 2007. Community structure of shoreline nekton in the estuarine portion of the Alafia River, Florida: Differences along a salinity gradient and inflow-related changes. Estuarine Coastal and Shelf Science 74(1-2):223-238.
- Greenwood, M. F. D., P. W. Stevens, and R. E. Matheson. 2006. Effects of the 2004 hurricanes on the fish assemblages in two proximate southwest Florida estuaries: Change in the context of interannual variability. Estuaries and Coasts 29(6a):985-996.
- Guenther, C. B., and T. C. MacDonald. 2012. Comparison of estuarine salinity gradients and associated nekton community change in the lower St. Johns River Estuary. Estuaries and Coasts 35(6):1443-1452.
- Guillen, G., J. Roberston, J. Oakley, and S. Curtis. 2015. Distribution, abundance, and habitat use of the Saltmarsh Topminnow (*Fundulus jenkinsi*). EIH Final Report:15-002.
- Gunter, G. 1956. Some relations of faunal distributions to salinity in estuarine waters. Ecology 37(3):616-619.

- Helfman, G., B. B. Collette, D. E. Facey, and B. W. Bowen. 2009. The diversity of fishes: biology, evolution, and ecology. John Wiley & Sons.
- Hoese, H. D., and R. H. Moore. 1977. Fishes of the Gulf of Mexico, Texas, Louisiana, and adjacent waters. Texas A&M University Press, College Station, Texas.
- Holland, M. M. 1988. SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB workshop on ecotones. Biology International 17(47):106.
- Idelberger, C. F., and M. F. Greenwood. 2005. Seasonal Variation in Fish Assemblages Within the Estuarine Portions of the Myakaka and Peace Rivers, Southwest Florida. Gulf of Mexico Science 23(2):224.
- In-Situ. 2013. Operator's manual: Level Troll 300, 500, 700, 700H Instruments. In-Situ Inc., Fort Collins, CO.
- James, N. C., S. J. Lamberth, C. Midgley, and A. K. Whitfield. 2018. Resilience of fish assemblages in the Breede Estuary, South Africa, to environmental perturbations. Environmental Biology of Fishes 101(1):109-126.
- Joca, L. K., V. L. Leray, K. S. Zigler, and R. C. Brusca. 2015. A new host and reproduction at a small size for the "snapper-choking isopod" Cymothoa excisa (Isopoda: Cymothoidae). Journal of Crustacean Biology 35(2):292-294.
- Johnson, R. B. J. 1977. Fishery Survey of Cedar Lakes and the Brazos and San Bernard River Estuaries. Texas Parks and Wildlife Department.
- Justus, B. G., S. V. Mize, J. Wallace, and D. Kroes. 2014. Invertebrate and fish assemblage relations to dissolved oxygen minima in lowland streams of southwestern Louisiana. River research and applications 30(1):11-28.
- Kimmel, J. 2011. Exploring the Brazos River: From Beginning to End. Texas A&M University Press, College Station, TX.
- Kimmerer, W. J. 2002a. Effects of freshwater flow on abundance of estuarine organisms: physical effects or trophic linkages? Marine Ecology Progress Series 243:39-55.
- Kimmerer, W. J. 2002b. Physical, biological, and management responses to variable freshwater flow into the San Francisco Estuary. Estuaries 25(6):1275-1290.
- Lamberth, S. J., L. Van Niekerk, and K. Hutchings. 2008. Comparison of, and the effects of altered freshwater inflow on, fish assemblages of two contrasting South African estuaries: the cool-temperate Olifants and the warm-temperate Breede. African Journal of Marine Science 30(2):311-336.
- Levinton, J. S. 1995. Marine biology: function, biodiversity, ecology, volume 420. Oxford University Press, New York.
- Lotze, H. K., H. S. Lenihan, B. J. Bourque, R. H. Bradbury, R. G. Cooke, M. C. Kay, S. M. Kidwell, M. X. Kirby, C. H. Peterson, and J. B. C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781):1806-1809.
- Miller, A. K. 2012. Site selection by migratory shorebirds in Oregon estuaries over broad and fine spatial scales.
- Miller, A. V. 2014. Characterization of the Brazos River Estuary. Master's Thesis. University of Houston-Clear Lake, Houston, Texas.

- Mitsch, W. J., B. Bernal, and M. E. Hernandez. 2015. Ecosystem services of wetlands. Taylor & Francis.
- Mitsch, W. J., and J. G. Gosselink. 2015. Wetlands, 5 edition. John Wiley & Sons.
- Moskalski, S. M., C. K. Sommerfield, and K.-C. Wong. 2011. Oceanic and hydrologic influences on flow and water properties in the St. Jones River estuary, Delaware. Estuaries and Coasts 34(4):800-813.
- Mueller, D. S., C. R. Wagner, M. S. Rehmel, K. A. Oberg, and F. Rainville. 2009.
 Measuring discharge with acoustic Doppler current profilers from a moving boat.
 U.S. Geological Survey Techniques and Methods. United States Geological
 Survey, Reston, Virginia.
- Mukherjee, S., A. Chaudhuri, N. Kundu, S. Mitra, and S. Homechaudhuri. 2013. Comprehensive analysis of fish assemblages in relation to seasonal environmental variables in an estuarine river of Indian Sundarbans. Estuaries and Coasts 36(1):192-202.
- Mukherjee, S., A. Chaudhuri, S. Sen, and S. Homechaudhuri. 2012. Effect of Cyclone Aila on estuarine fish assemblages in the Matla River of the Indian Sundarbans. Journal of tropical ecology 28(4):405-415.
- Nielsen-Gammon, J. W. 2012. The 2011 texas drought. Texas Water Journal 3(1):59-95.
- NOAA. 1990. Estuaries of the United States: vital statistics of a national resource base. Office of Ocean Resources Conservation Assessment.
- Orlando, S., L. Rozas, G. Ward, and C. Klein. 1993. Salinity characteristics of Gulf of Mexico estuaries. National Oceanic and Atmospheric Administration, Office of Ocean Resources Conservation Assessment, Silver Spring, Maryland.
- Page, L. M., H. Espinosa-Pérez, L. T. Findley, C. R. Gilbert, R. N. Lea, N. E. Mandrak, R. L. Mayden, and J. S. Nelson. 2013. Common and scientific names of fishes from the United States, Canada, and Mexico. American Fisheries Society, Bethesda, Maryland.
- Palmer, T. A., P. A. Montagna, J. B. Pollack, R. D. Kalke, and H. R. J. H. DeYoe. 2011. The role of freshwater inflow in lagoons, rivers, and bays. 667(1):49-67.
- Parnell, A., R. Windham, S. Ray, A. Schulze, and A. Quigg. 2011. Distribution of *Rangia* clams in response to freshwater inflows in Galveston Bay, Texas. Texas A&M at Galveston, Galveston, Texas.
- Pattillo, M. E., T. E. Czapla, D. M. Nelson, and M. E. Monaco. 1997. Distribution and Abundance of Fishes and Invertebrates in Gulf of Mexico Estuaries: Species life history summaries, volume 2. US Department of Commerce, National Oceanic and Atmospheric Administration.
- Peterson, M. S., and S. T. Ross. 1991. Dynamics of littoral fishes and decapods along a coastal river-estuarine gradient. Estuarine, Coastal and Shelf Science 33(5):467-483.
- Phillips, J. D. 2006. Geomorphic context, constraints, and change in the lower Brazos and Navasota Rivers, Texas. Copperhead Road Geoscience.
- Quigg, A., and J. Steichen. 2015. Defining Bioindicators for Freshwater inflow Needs Studies. Texas A&M University at Galveston, Texas.

- Renfro, W. C. 1962. Small beam net for sampling postlarval shrimp. Galveston Biological Lab. June 30:86-67.
- Rodriguez, A. B., M. D. Hamilton, and J. B. Anderson. 2000. Facies and evolution of the modern Brazos Delta, Texas: wave versus flood influence. Journal of Sedimentary Research 70(2):283-295.
- Salvant, J. U., and D. McComb. 1999. The Historic Seacoast of Texas. University of Texas Press, Austin, Texas.
- Sheaves, M., R. Johnston, and R. M. Connolly. 2012. Fish assemblages as indicators of estuary ecosystem health. Wetlands ecology and management 20(6):477-490.
- Sogard, S., D. Hoss, and J. Govoni. 1987. Density and depth distribution of larval Gulf menhaden, Atlantic croaker and spot in the northern Gulf of Mexico. Fishery Bulletin 85(3-4):601.

Sontek, Y. 2013. RiverSurveyor S5/M9 System Manual. San Diego.

- Soto, M. A., G. J. Holt, S. A. Holt, and J. Rooker. 1998. Food habits and dietary overlap of newly settled red drum (Sciaenops ocellatus) and Atlantic croaker (Micropogonias undulatus) from Texas seagrass meadows. Gulf Caribbean Research 10(1):41-55.
- Stevens, P. W., M. F. Greenwood, and D. A. Blewett. 2013. Fish assemblages in the oligohaline stretch of a southwest Florida river during periods of extreme freshwater inflow variation. Transactions of the American Fisheries Society 142(6):1644-1658.
- Swanson, T. 2019. Nekton community characterization of the lower Brazos River with an emphasis on larval Atlantic Croaker, *Micropogonias undulatus*, trophic dynamics. Master's Thesis. University of Houston-Clear Lake, Houston, Texas.
- TCEQ. 2002. Texas Water Quality Inventory. Texas Commission on Environmental Quality, Austin, Texas.
- TCEQ. 2004. Atlas of Texas Surface Waters: Maps of the classified. Texas Commission on Environmental Quality, Austin, Texas. Available: http://www.tceq.state.tx.us/publications/gi/gi-316/index.html. (December 2021).
- TCEQ. 2012. Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods. Texas Commission on Environmental Quality, Austin, Texas.
- TCEQ. 2014. Brazos River and its Associated Bay and Estuary System. Texas Commission on Environmental Quality, Environmental Flow Standards for Surface Water, Austin, Texas. Available: <u>https://www.tceq.texas.gov/assets/public/legal/rules/rules/pdflib/298g.pdf</u>. (December 2021).
- Townsend, C. 2009. A Geographic History of the Brazos River Diversion at Freeport, Texas and the Influence of the Diversion on the Brazosport Region. Texas State University - San Marcos, Texas.
- Tsou, T.-S., and R. E. Matheson. 2002. Seasonal changes in the nekton community of the Suwannee River estuary and the potential impacts of freshwater withdrawal. Estuaries 25(6):1372-1381.

- USEPA. 1999. Ecological condition of estuaries in the Gulf of Mexico. EPA 620-R-98-004). National Health and Environmental Effects Research Laboratory.
- USGS. 2005. Largest Rivers in the United States. United States Geological Survey. Available: https://pubs.usgs.gov/of/1987/ofr87-242/. (December 2021).
- USGS. 2008. EDNA Derived Watersheds for Major Named Rivers Brazos. United States Geological Survey. Available: <u>https://edna.usgs.gov/watersheds/ws_chars.php?title=Brazos&name=brazos</u>. (December 2021).
- Van Diggelen, A. D., and P. A. Montagna. 2016. Is salinity variability a benthic disturbance in estuaries? Estuaries and Coasts 39(4):967-980.
- Van Oldenborgh, G. J., K. Van Der Wiel, A. Sebastian, R. Singh, J. Arrighi, F. Otto, K. Haustein, S. Li, G. Vecchi, and H. J. Cullen. 2017. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters 12(12):124009.
- Wagner, C. M., and H. M. Austin. 1999. Correspondence between environmental gradients and summer littoral fish assemblages in low salinity reaches of the Chesapeake Bay, USA. Marine Ecology Progress Series 177:197-212.
- White, W. A., and T. R. Calnan. 1990. Sedimentation and historical changes in fluvialdeltaic wetlands along the Texas Gulf coast with emphasis on the Colorado and Trinity River deltas. University of Texas at Austin, Bureau of Economic Geology.
- Wilde, G. R., and B. W. Durham. 2013. Habitat associations of the sharpnose shiner *Notropis oxyrhynchus* in the upper Brazos River, Texas. Journal of freshwater ecology 28(4):453-461.
- Zeng, F.-W., C. A. Masiello, and W. C. Hockaday. 2011. Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry 104(1-3):275-291.
- Zeug, S., and K. Winemiller. 2008. Relationships between hydrology, spatial heterogeneity, and fish recruitment dynamics in a temperate floodplain river. River Research Applications 24(1):90-102.

APPENDIX A:

SUPPLEMENTARY PHOTOS

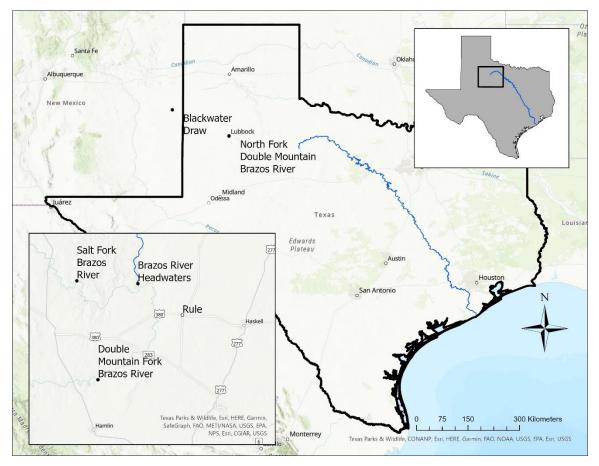
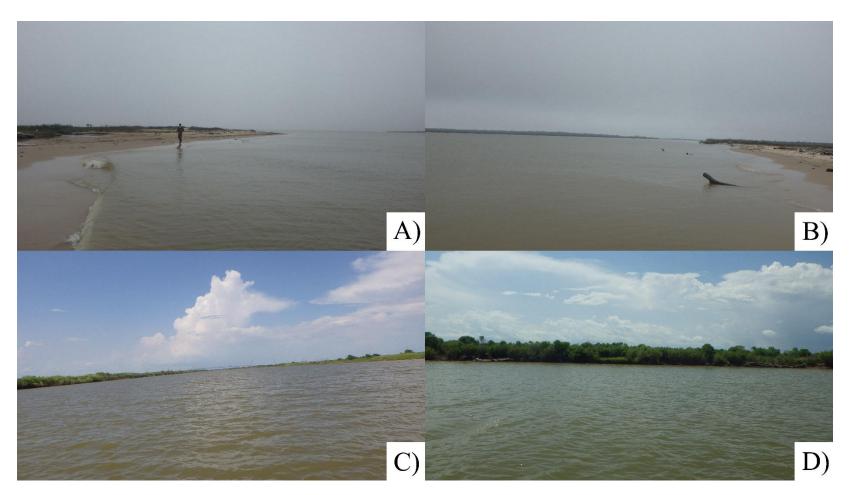



Figure 51. Map of Texas showing the route of the Brazos River from its headwaters near Rule, TX to the Gulf of Mexico near Freeport, TX. Although the Blackwater Draw and North Fork Double Mountain Brazos River flow directly into the headwaters, their flow is not continuous year-round, and therefore neither are officially recognized as headwaters.

Figure 52. Site Collage of B01 and B05. A) Downstream view at B01 from left bank. B) Upstream view at B01 from left bank. C) Upstream view at B05. D) Right bank at B05.

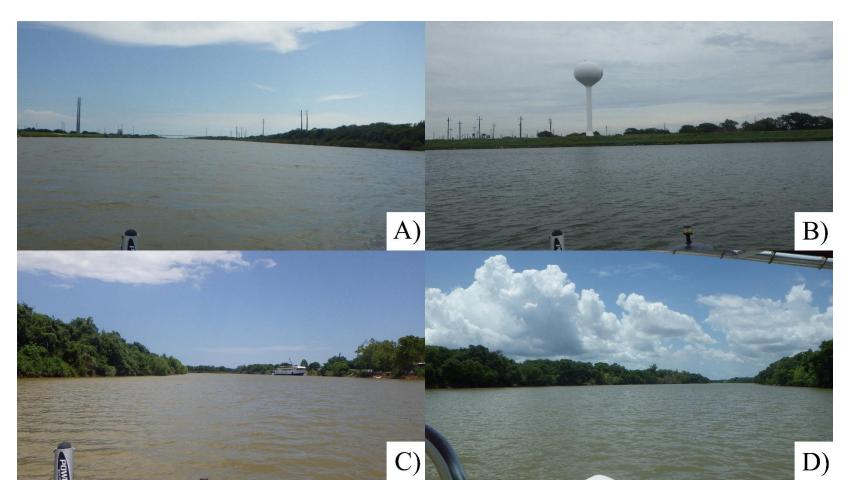


Figure 53. Site collage of B10 and B15. A) Downstream view at B10. B) Left bank at B10. C) Downstream view at B15. D) Upstream view at B15.

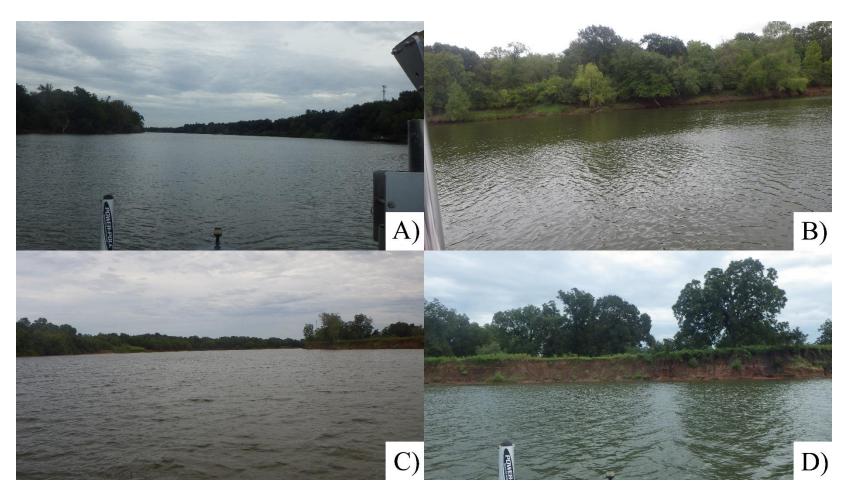
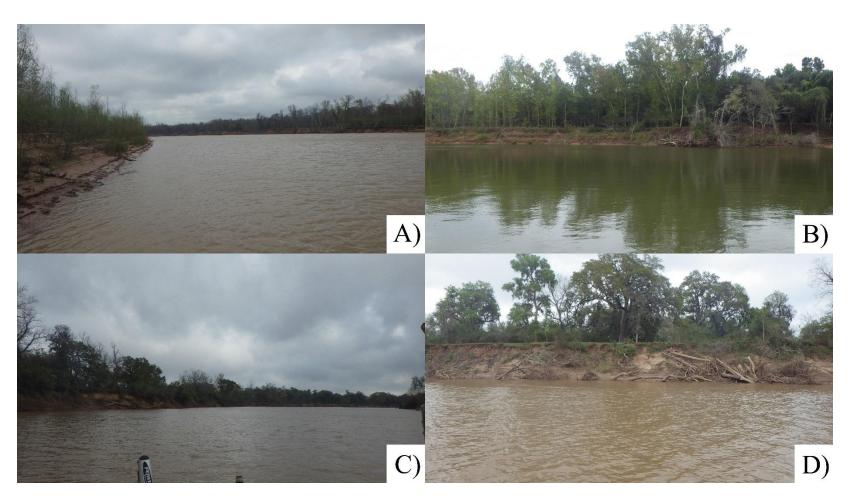



Figure 54. Site collage of B22 and B25. A) Downstream view at B22. B) Right bank at B22. C) Downstream view at B25. D) Right bank at B25.

Figure 55. Site Collage of B31 and B36. A) Upstream view at B31 from right bank. B) Left bank at B31. C) Downstream view at B36. D) Left bank at B36.

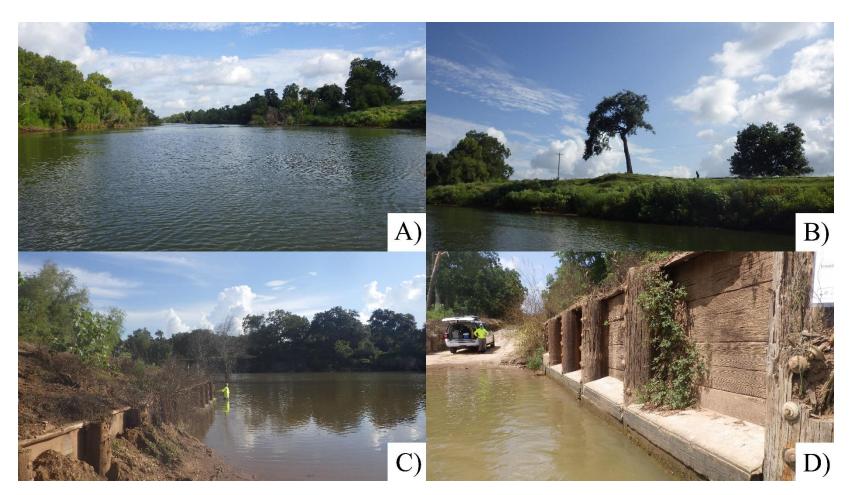


Figure 56. Site Collage of B42 and Upper site. A) Upstream view at B42. B) Left bank at B42. C) Taking side-by-side sonde readings at Upper site. D) View of boat ramp at Upper site from river.

Figure 57. Lower and Middle Site Collage. A) View of boat ramp at Middle site. Taking side-by-side readings at B) Middle site and D) Lower site. View of boat ramp at Lower site.

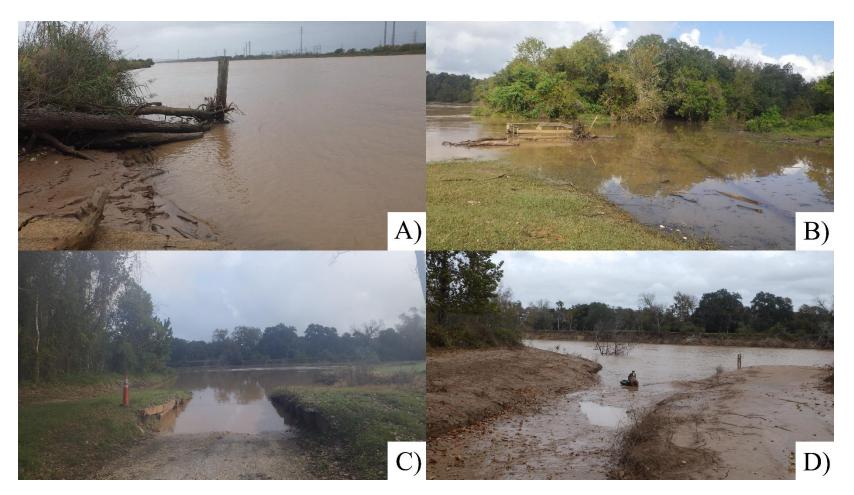


Figure 58. Site collage of continuous sites at flood stage between October 2018 and February 2019. A) Lower site on 11/29/2018. B) View of submerged boat ramp at Middle site on 11/06/2018. C) View of submerged boat ramp at Upper site on 11/06/2018. View of buried boat ramp at Upper site on 11/29/2018 after water levels had dropped.

Figure 59. Time lapse photos from Lower (Bottom) and Middle (Top) game cameras between 10/14/18 to 10/16/18. Timestamps at the bottom of the photos are one hour behind actual time. Discharge values in the top left show what was recorded at USGS gage #08116650 at the time the photo was taken.

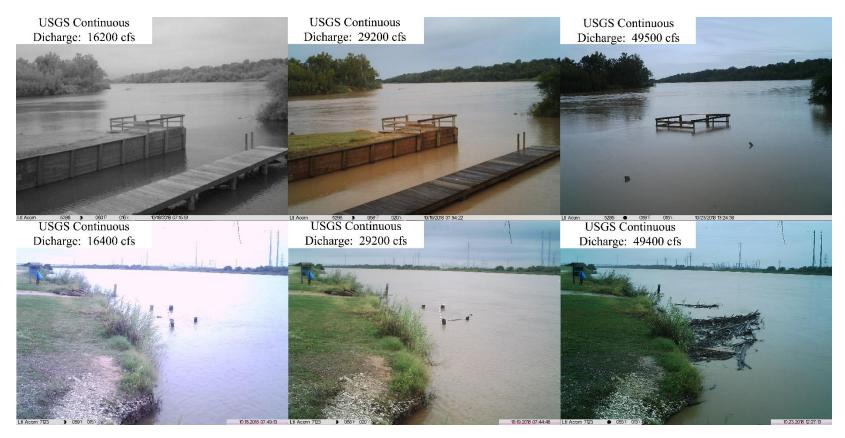


Figure 60. Time lapse photos from Lower (Bottom) and Middle (Top) game cameras between 10/18/18 to 10/23/18. Timestamps at the bottom of the photos are one hour behind actual time. Discharge values in the top left show what was recorded at USGS gage #08116650 at the time the photo was taken.

Figure 61. Example photo vouchers of common nekton species found in the Brazos estuary.

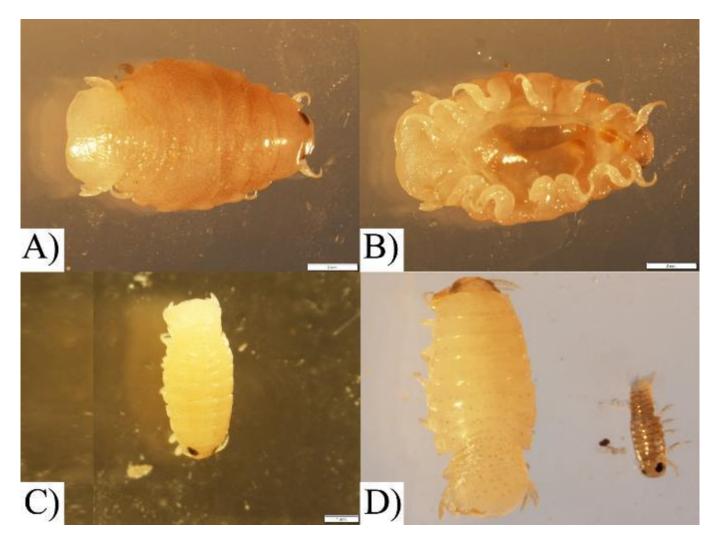


Figure 62. Microscopic imagery of Cymothoa excisa- a common ectoparasitic isopod extracted from the oral and gill cavities of Star Drum during the current study. Mature female dorsal view (A) and ventral view (B). (C) Mature male dorsal view. (D) Dorsal view of an intermediate female (left) and juvenile (right).

APPENDIX B:

SITE LOCATIONS

Table 5. Sampling sites including approximate distance from mouth (RKM; + upstream; - downstream into Gulf of Mexico), GPS coordinates and site type- refer to Table 1 for site type definitions.

type definitions.					
Site	RKM	Latitude	Longitude	Site Type	
G03	-3	28.8457	-95.3709	Primary	
G02U1	-3	28.86508	-95.3582	Secondary	
G02D1	-3	28.85212	-95.3866	Secondary	
G02	-2	28.85813	95.37266	Primary	
G01U3	-4	28.89297	-95.3338	Secondary	
G01D3	-4	28.85201	-95.4169	Secondary	
G01U1	-2	28.8751	-95.3616	Tertiary	
G01D2	-3	28.84946	-95.4002	Secondary	
G01D1	-2	28.8628	-95.388	Tertiary	
G01	-1	28.86862	-95.3758	Primary	
B01	1	28.88368	-95.38227	Primary	
B05	5	28.92592	-95.38534	Secondary	
Lower ^a	10	28.96457	-95.37428	Continuous	
B10	10	28.96682	-95.37464	Primary	
B15	15	28.98117	-95.41979	Secondary	
B22	22	29.00908	-95.45314	Primary	
Middle ^b	25	29.03151	-95.47712	Continuous	
B25	25	29.02987	-95.48269	Secondary	
B31	31	29.03473	-95.50422	Primary	
Upper ^a	36	29.04816	-95.53421	Continuous	
B36	36	29.04785	-95.53343	Secondary	
B42	42	29.07288	-95.57167	Secondary ^c	

^a First utilized in Bonner et al. 2017; listed coordinates reflect current study as they were different in previous sampling years.

^b First utilized in Bonner et al. 2015; listed coordinates reflect current study as they were different in previous sampling years.

^c B42 was a primary site prior to current study but was downgraded to a secondary site due to previous studies showing low abundances of estuarine nekton. Grab samples were still collected at B42 in addition to vertical water quality profile readings.

APPENDIX C:

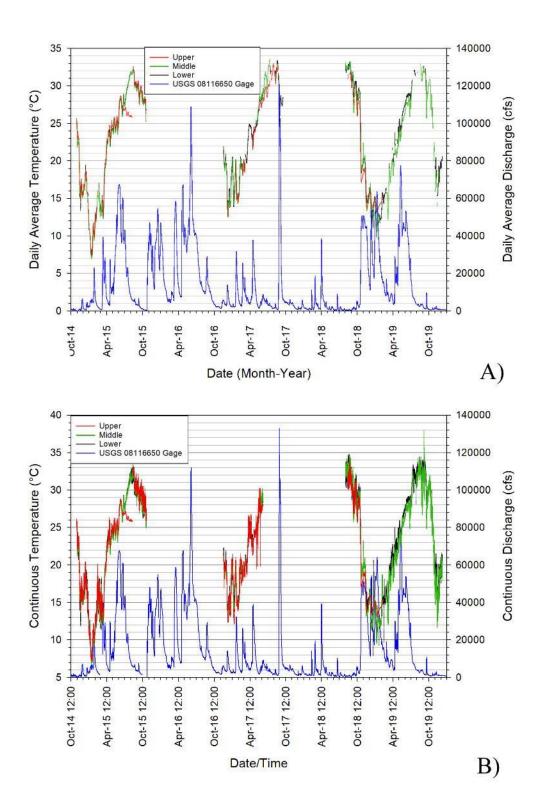
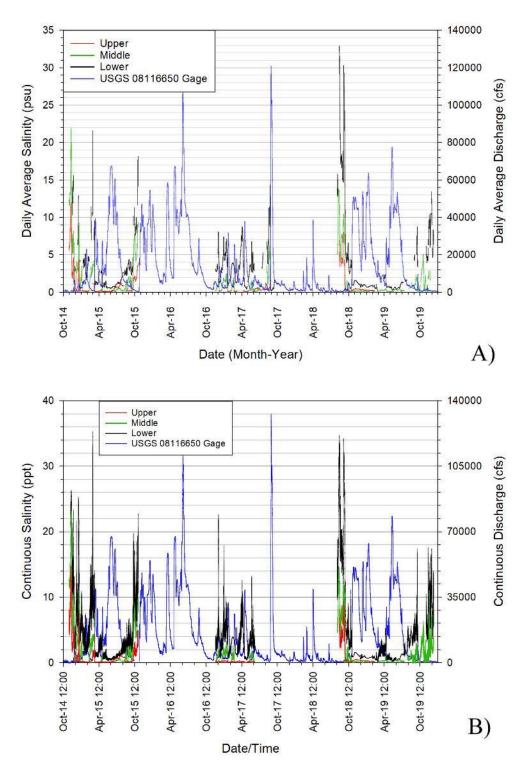
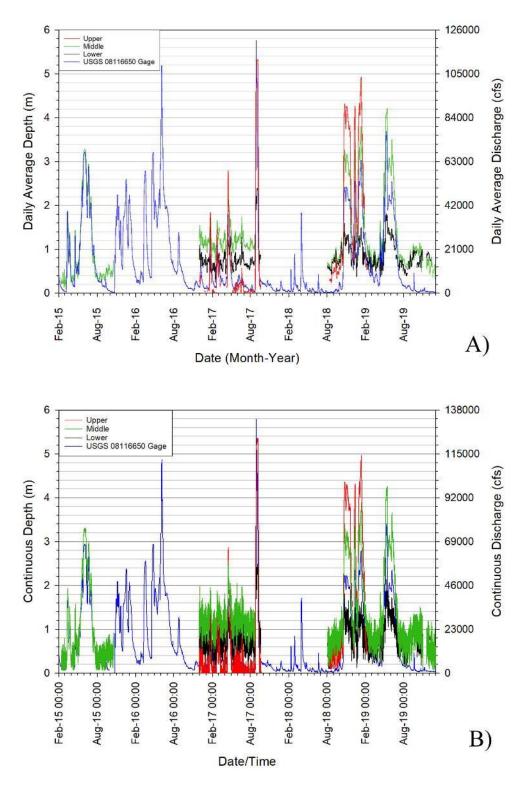

DATA SOURCES

Table 6. Automated data sources for hydrology and meteorology utilized for current and previous studies.


Data Acquired	Agency	Station ID	Source and Comments
Local weather	Weather	KTXLAKEJ79	Lake Jackson, TX Weather
forecast, daily	Underground		Conditions Weather
precipitation			Underground
			(wunderground.com)
Water Level	National Oceanic and	8772447 Tide	Station Home Page -
and Tidal	Atmospheric	Gage at	NOAA Tides & Currents
Height	Administration	Freeport, TX	This station was taken
	(NOAA)		offline at 18:45 on May 24,
			2020. Station 8772471 was
			used for tide data in the
			event station 8772447 was
			unavailable.
Annual,	United States	08116650	USGS Current Conditions
Monthly,	Geological Survey	Brazos River	for USGS 08116650
Daily, and	(USGS)	near Rosharon,	Brazos Rv nr Rosharon,
quarter-hourly		TX	TX
discharge			
Monthly	Texas Water	N/A	Water Data For Texas
Palmer	Development Board		
Hydrological	(TWDB)		
Drought Index			
(PHDI)			

APPENDIX D:


CONTINUOUS MONITORING GRAPHS

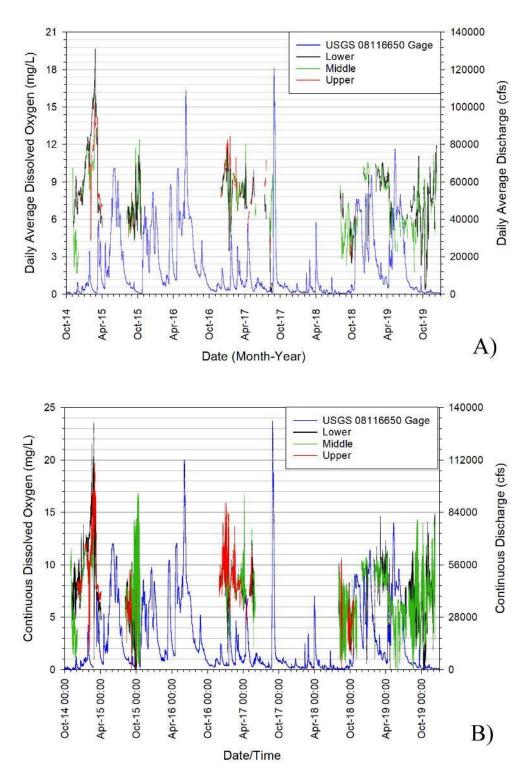

Figure 63. Time series graphs of temperature data and discharge data. A) Daily average data. B) Continuous data.

Figure 64. Time series graphs of salinity data and discharge data. A) Daily average data. B) Continuous data.

Figure 65. Time series graphs of TROLL data and discharge data. A) Daily average data. B) Continuous data.

Figure 66. Time series graphs of dissolved oxygen data and discharge data. A) Daily average data. B) Continuous data.

APPENDIX E:

SUMMARY STATISTICS FOR WATER QUALITY PROFILE

Table 7. Summary statistics of water quality for each site at the surface, bottom, and combined depth profiles.

		Sui	rface	Во	ttom		All
Variable	Site	Mean	SE Mean	Mean	SE Mean	Mean	SE Mean
Temperature (°C)	B01	23.26	1.21	22.82	1.21	23.032	0.537
	B05	23.59	1.21	23.33	1.20	23.507	0.536
	B10	23.56	1.24	23.92	1.17	23.805	0.536
	B15	23.46	1.28	24.66	1.23	24.058	0.558
	B22	23.47	1.28	24.58	1.19	23.888	0.551
	B25	23.40	1.27	23.81	1.22	23.488	0.555
	B31	23.45	1.29	23.62	1.27	23.479	0.562
	B36	23.34	1.29	23.39	1.29	23.321	0.566
	B42	23.32	1.31	23.35	1.30	23.285	0.572
Salinity (psu)	B01	6.87	1.03	23.80	1.45	16.280	0.865
	B05	5.346	0.916	22.92	1.88	14.910	0.946
	B10	4.214	0.875	20.20	1.56	12.923	0.839
	B15	2.169	0.755	18.76	2.12	10.351	0.975
	B22	1.685	0.642	14.75	2.41	7.653	0.909
	B25	1.257	0.534	7.11	1.91	3.371	0.581
	B31	0.873	0.422	5.19	1.81	2.693	0.552
	B36	0.603	0.285	1.749	0.879	1.142	0.278
	B42	0.439	0.157	1.090	0.667	0.709	0.199
DO (mg/L)	B01	7.424	0.280	6.459	0.347	6.797	0.138
	B05	7.484	0.282	5.116	0.416	6.216	0.169
	B10	7.465	0.321	4.348	0.420	5.929	0.191
	B15	7.527	0.307	4.760	0.459	6.002	0.201
	B22	7.487	0.298	4.687	0.541	6.006	0.224
	B25	7.386	0.308	5.818	0.544	6.726	0.192
	B31	7.503	0.316	6.169	0.575	6.810	0.205
	B36	7.625	0.338	6.711	0.461	7.085	0.176
	B42	7.788	0.327	7.074	0.393	7.346	0.160
рН	B01	7.8552	0.0296	7.8978	0.0338	7.8656	0.0140
	B05	7.8548	0.0288	7.7863	0.0380	7.8048	0.0144
	B10	7.8696	0.0327	7.6511	0.0261	7.7411	0.0140
	B15	7.8633	0.0339	7.6004	0.0379	7.7180	0.0180
	B22	7.8496	0.0374	7.5615	0.0438	7.7012	0.0204
	B25	7.8081	0.0366	7.6663	0.0444	7.7499	0.0166
	B31	7.8230	0.0383	7.6922	0.0462	7.7559	0.0184

		Sur	face	Bo	ttom		All
Variable	Site	Mean	SE Mean	Mean	SE Mean	Mean	SE Mean
	B36	7.8130	0.0426	7.7185	0.0398	7.7557	0.0177
	B42	7.8130	0.0477	7.7407	0.0446	7.7678	0.0200
Turbidity (NTU)	B01	29.30	7.08	56.96	9.04	35.70	3.52
	B05	35.48	8.25	119.2	52.8	49.5	11.4
	B10	49.9	12.7	62.4	19.4	49.73	6.47
	B15	61.7	14.2	247	167	104.5	34.2
	B22	70.9	15.4	105.4	28.0	84.52	9.28
	B25	86.6	17.6	104.4	21.6	97.33	8.61
	B31	92.7	17.1	128.5	29.4	104.41	9.47
	B36	100.8	17.7	113.7	18.8	107.26	8.15
	B42	97.4	16.1	137.1	21.6	114.41	8.27
Total Depth (m)	B01	5.733	0.269	5.733	0.269	5.733	0.118
	B05	6.815	0.195	6.815	0.195	6.8152	0.0858
	B10	5.702	0.261	5.702	0.261	5.702	0.115
	B15	8.086	0.229	8.086	0.229	8.086	0.101
	B22	7.466	0.194	7.466	0.194	7.4659	0.0854
	B25	4.830	0.268	4.830	0.268	4.830	0.118
	B31	5.816	0.213	5.816	0.213	5.8155	0.0939
	B36	6.336	0.224	6.336	0.224	6.3357	0.0985
	B42	7.5174	0.0903	7.5174	0.0903	7.5174	0.0398
Secchi (m)	B01	0.2720	0.0260	0.2720	0.0260	0.2720	0.0114
	B05	0.2481	0.0295	0.2481	0.0295	0.2481	0.0129
	B10	0.2253	0.0287	0.2253	0.0287	0.2253	0.0126
	B15	0.2049	0.0359	0.2049	0.0359	0.2049	0.0157
	B22	0.1799	0.0290	0.1799	0.0290	0.1799	0.0128
	B25	0.1567	0.0291	0.1567	0.0291	0.1567	0.0127
	B31	0.1568	0.0293	0.1568	0.0293	0.1568	0.0129
	B36	0.1331	0.0210	0.1331	0.0210	0.13306	0.00915
	B42	0.1190	0.0164	0.1190	0.0164	0.11904	0.00723

		Su	rface	Bo	ttom		All
Variable	Flow Tier	Mean	SE Mean	Mean	SE Mean	Mean	SE Mean
Temperature (°C)	Avg-3ps	25.002	0.334	25.095	0.375	25.043	0.157
	Avg-Base	18.86	1.87	19.17	1.75	18.861	0.802
	Avg-Sub	20.770	0.742	21.488	0.800	21.138	0.348
	Wet-2ps	31.868	0.120	31.317	0.269	31.521	0.0905
	Wet-Base	23.578	0.778	23.570	0.769	23.533	0.343
	Wet-Sub	23.660	0.932	24.467	0.923	24.066	0.412
Salinity (psu)	Avg-3ps	1.032	0.218	5.87	1.36	3.411	0.450
	Avg-Base	1.961	0.445	13.99	2.51	7.830	0.926
	Avg-Sub	6.30	1.05	19.05	1.59	13.378	0.711
	Wet-2ps	1.531	0.449	13.89	3.46	7.69	1.24
	Wet-Base	1.231	0.203	10.04	1.48	5.367	0.500
	Wet-Sub	3.232	0.534	16.42	1.78	9.942	0.714
DO (mg/L)	Avg-3ps	6.700	0.106	6.122	0.201	6.4159	0.0739
	Avg-Base	8.618	0.248	6.451	0.616	7.505	0.226
	Avg-Sub	7.793	0.343	5.032	0.398	6.086	0.179
	Wet-2ps	6.632	0.139	5.189	0.373	5.822	0.136
	Wet-Base	7.632	0.185	6.181	0.319	7.010	0.109
	Wet-Sub	7.614	0.211	4.931	0.451	6.202	0.169
рН	Avg-3ps	7.6620	0.0148	7.6164	0.0215	7.6269	0.00786
	Avg-Base	7.7704	0.0521	7.5870	0.0418	7.6763	0.0204
	Avg-Sub	7.8767	0.0323	7.7071	0.0347	7.7713	0.0146
	Wet-2ps	7.8789	0.0413	7.7678	0.0433	7.8249	0.0185
	Wet-Base	7.8706	0.0124	7.7798	0.0253	7.8238	0.00855
	Wet-Sub	7.9584	0.0204	7.7142	0.0418	7.8288	0.0153
Turbidity (NTU)	Avg-3ps	122.2	16.0	178.9	25.7	141.69	8.75
	Avg-Base	81.6	11.2	122.3	43.3	87.32	9.90
	Avg-Sub	21.33	4.83	28.33	5.91	21.82	2.33
	Wet-2ps	74.3	17.6	124.5	29.1	99.9	10.7
	Wet-Base	88.36	9.55	191.0	69.1	114.5	14.6
	Wet-Sub	24.40	2.62	36.27	5.47	26.68	1.68
Mid-channel Total Depth (m)	Avg-3ps	6.377	0.250	6.377	0.250	6.377	0.111
	Avg-Base	5.766	0.225	5.766	0.225	5.7660	0.0990
	Avg-Sub	6.066	0.248	6.066	0.248	6.066	0.110
	Wet-2ps	7.224	0.256	7.224	0.256	7.224	0.112
	Wet-Base	6.893	0.162	6.893	0.162	6.8933	0.0718
	Wet-Sub	6.537	0.236	6.537	0.236	6.537	0.105

Table 8. Summary statistics of water quality for each flow tier at the surface, bottom, and combined depth profiles.

		Surface		Bot	tom	All		
Variable	Flow Tier	Mean	SE Mean	Mean	SE Mean	Mean	SE Mean	
Secchi (m)	Avg-3ps	0.1562	0.0141	0.1562	0.0141	0.15616	0.00621	
	Avg-Base	0.1611	0.0254	0.1611	0.0254	0.1611	0.0111	
	Avg-Sub	0.3572	0.0322	0.3572	0.0322	0.3572	0.0142	
	Wet-2ps	0.1179	0.0178	0.1179	0.0178	0.11793	0.00773	
	Wet-Base	0.11403	0.00863	0.11403	0.00863	0.11403	0.00383	
	Wet-Sub	0.2217	0.0172	0.2217	0.0172	0.22173	0.00762	

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.18	1.24	6.43	11.87	24.53	31.80
	75.00%	22.88	1.22	6.32	11.16	24.49	30.84
	Bottom	22.82	1.21	6.30	11.13	24.46	30.86
	Middle	23.03	1.22	6.32	11.64	24.46	30.73
	Surface	23.26	1.21	6.29	12.38	24.03	31.59
Salinity (psu)	25.00%	11.03	1.38	7.20	1.80	8.72	27.59
	75.00%	22.40	1.57	8.16	1.80	24.19	34.87
	Bottom	23.80	1.45	7.55	1.79	25.02	34.01
	Middle	17.30	1.90	9.86	1.81	19.11	35.51
	Surface	6.87	1.03	5.34	1.82	6.13	27.60
DO (mg/L)	25.00%	6.783	0.317	1.646	2.960	6.580	9.580
	75.00%	6.674	0.290	1.508	3.790	6.530	9.170
	Bottom	6.459	0.347	1.801	1.560	6.630	9.090
	Middle	6.644	0.291	1.513	4.080	6.410	9.230
	Surface	7.424	0.280	1.454	5.280	7.130	10.400
рН	25.00%	7.8119	0.0290	0.1507	7.5200	7.8100	8.1200
	75.00%	7.9111	0.0329	0.1711	7.5800	7.9000	8.2400
	Bottom	7.8978	0.0338	0.1759	7.5700	7.9000	8.2400
	Middle	7.8522	0.0298	0.1549	7.5800	7.8200	8.1700
	Surface	7.8552	0.0296	0.1536	7.5900	7.8400	8.2100
Turbidity (NTU)	25.00%	31.39	7.58	38.64	1.00	16.05	165.20
-	75.00%	31.00	6.99	35.63	1.80	21.35	169.80
	Bottom	56.96	9.04	46.10	-5.20	49.75	177.20
	Middle	29.86	7.62	38.87	0.60	16.10	164.80
	Surface	29.30	7.08	36.11	0.20	15.45	146.90
Total Depth (m)	Bottom	5.733	0.269	1.397	3.755	5.575	8.967
Secchi (m)	Surface	0.2720	0.0260	0.1349	0.0640	0.2740	0.6140

Table 9. Summary statistics of water profile for site B01.

	Depth of		SE	or site D			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.59	1.26	6.52	11.53	24.56	31.90
	75.00%	23.37	1.22	6.33	12.67	24.42	31.52
	Bottom	23.33	1.20	6.22	12.85	24.43	31.98
	Middle	23.66	1.20	6.24	12.14	24.40	31.69
	Surface	23.59	1.21	6.29	12.76	24.72	32.05
Salinity (psu)	25.00%	8.35	1.43	7.44	1.41	6.34	27.31
	75.00%	21.47	1.85	9.62	1.66	24.09	34.53
	Bottom	22.92	1.88	9.75	1.88	25.12	34.65
	Middle	16.46	1.96	10.17	1.51	19.70	33.11
	Surface	5.346	0.916	4.760	1.370	4.180	24.550
DO (mg/L)	25.00%	6.674	0.342	1.778	3.180	6.620	9.410
	75.00%	5.799	0.364	1.894	2.310	5.890	8.660
	Bottom	5.116	0.416	2.159	0.860	5.430	8.140
	Middle	6.005	0.328	1.703	2.760	5.900	8.890
	Surface	7.484	0.282	1.465	5.030	7.270	10.090
рН	25.00%	7.7830	0.0232	0.1205	7.5700	7.8000	8.0700
	75.00%	7.8326	0.0362	0.1883	7.3100	7.8300	8.1600
	Bottom	7.7863	0.0380	0.1972	7.2100	7.7800	8.1000
	Middle	7.7674	0.0322	0.1676	7.4200	7.8000	8.1000
	Surface	7.8548	0.0288	0.1498	7.5800	7.8300	8.1800
Turbidity (NTU)	25.00%	35.40	8.79	44.80	-0.90	17.05	166.20
	75.00%	27.34	9.24	47.14	0.10	11.00	187.20
	Bottom	119.2	52.8	269.0	-1.7	25.8	1196.5
	Middle	30.12	8.46	43.15	0.10	11.65	159.80
	Surface	35.48	8.25	42.07	-1.00	18.45	167.20
Total Depth (m)	Bottom	6.815	0.195	1.013	4.168	6.938	8.095
Secchi (m)	Surface	0.2481	0.0295	0.1218	0.0740	0.2490	0.5800

Table 10. Summary statistics of water profile for site B05.

	Depth of		SE	or sile Di			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.65	1.27	6.58	11.52	24.27	32.50
	75.00%	23.98	1.18	6.12	12.72	24.38	31.91
	Bottom	23.92	1.17	6.06	12.78	24.34	31.78
	Middle	23.92	1.23	6.40	12.47	24.33	33.16
	Surface	23.56	1.24	6.45	11.52	24.33	32.22
Salinity (psu)	25.00%	7.11	1.35	6.99	0.72	4.78	24.27
	75.00%	18.32	1.66	8.65	2.81	22.48	31.33
	Bottom	20.20	1.56	8.09	3.74	23.75	32.01
	Middle	14.77	1.70	8.82	1.27	15.92	30.45
	Surface	4.214	0.875	4.549	0.700	3.170	24.100
DO (mg/L)	25.00%	6.834	0.347	1.801	2.080	6.550	9.610
	75.00%	5.170	0.390	2.024	1.100	5.740	8.530
	Bottom	4.348	0.420	2.184	0.790	3.680	8.210
	Middle	5.829	0.381	1.980	1.240	6.000	8.850
	Surface	7.465	0.321	1.670	5.240	7.120	11.870
рН	25.00%	7.7956	0.0259	0.1346	7.5600	7.7700	8.0500
	75.00%	7.6852	0.0256	0.1332	7.3800	7.6900	7.9500
	Bottom	7.6511	0.0261	0.1357	7.3100	7.6700	7.9400
	Middle	7.7041	0.0267	0.1387	7.4200	7.7300	7.9800
	Surface	7.8696	0.0327	0.1697	7.5800	7.8600	8.2900
Turbidity (NTU)	25.00%	51.1	13.3	67.9	0.7	27.9	281.6
-	75.00%	44.7	14.6	74.4	1.6	16.4	299.0
	Bottom	62.4	19.4	97.2	-4.8	31.2	434.2
	Middle	41.0	12.3	62.7	-0.6	13.9	233.9
	Surface	49.9	12.7	65.0	0.8	26.0	287.3
Total Depth (m)	Bottom	5.702	0.261	1.355	3.037	5.607	8.291
Secchi (m)	Surface	0.2253	0.0287	0.1491	0.0420	0.1800	0.6380

Table 11. Summary statistics of water profile for site B10.

	Depth of	0	SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.39	1.28	6.63	10.72	23.96	32.31
	75.00%	24.66	1.24	6.43	13.11	23.90	33.51
	Bottom	24.66	1.23	6.39	13.48	23.90	33.45
	Middle	24.11	1.29	6.71	10.70	23.90	33.37
	Surface	23.46	1.28	6.64	10.98	24.21	32.53
Salinity (psu)	25.00%	3.31	1.03	5.34	0.14	1.13	20.10
	75.00%	17.07	2.17	11.26	0.14	22.42	32.34
	Bottom	18.76	2.12	10.99	0.14	23.42	32.98
	Middle	10.45	2.18	11.33	0.14	4.79	30.51
	Surface	2.169	0.755	3.926	0.140	0.950	20.070
DO (mg/L)	25.00%	6.745	0.367	1.906	2.700	6.520	9.740
	75.00%	5.030	0.457	2.377	0.360	4.830	9.280
	Bottom	4.760	0.459	2.385	0.430	4.650	9.280
	Middle	5.950	0.431	2.242	0.750	5.950	9.520
	Surface	7.527	0.307	1.596	5.370	7.200	11.050
рН	25.00%	7.7863	0.0322	0.1674	7.5200	7.7800	8.0800
	75.00%	7.6304	0.0370	0.1922	7.2100	7.6700	8.0100
	Bottom	7.6004	0.0379	0.1971	7.1900	7.6500	8.0400
	Middle	7.7096	0.0388	0.2015	7.2100	7.7200	8.0600
	Surface	7.8633	0.0339	0.1760	7.5300	7.8500	8.2200
Turbidity (NTU)	25.00%	70.3	16.1	81.9	-3.0	40.6	324.7
-	75.00%	71.4	23.9	122.0	-1.6	7.1	430.8
	Bottom	247	167	850	1	17	4362
	Middle	72.5	20.0	101.8	-1.8	26.6	371.8
	Surface	61.7	14.2	72.2	1.0	37.7	311.2
Total Depth (m)	Bottom	8.086	0.229	1.188	5.500	8.430	9.936
Secchi (m)	Surface	0.2049	0.0359	0.1480	0.0300	0.1500	0.6390

Table 12. Summary statistics of water profile for site B15.

	Depth of	0	SE	jor suc I			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.27	1.27	6.61	10.50	23.94	32.00
	75.00%	24.45	1.19	6.21	13.15	23.88	33.12
	Bottom	24.58	1.19	6.16	13.14	24.20	33.09
	Middle	23.68	1.29	6.70	10.52	23.88	32.98
	Surface	23.47	1.28	6.66	10.81	24.08	32.69
Salinity (psu)	25.00%	1.813	0.655	3.402	0.140	0.390	17.220
	75.00%	13.92	2.27	11.82	0.14	21.75	30.76
	Bottom	14.75	2.41	12.50	0.14	22.35	30.83
	Middle	6.10	1.81	9.39	0.14	0.59	29.40
	Surface	1.685	0.642	3.338	0.140	0.360	17.100
DO (mg/L)	25.00%	7.095	0.311	1.616	4.070	6.540	9.660
	75.00%	4.641	0.551	2.861	0.300	5.340	9.330
	Bottom	4.687	0.541	2.811	0.320	5.220	9.340
	Middle	6.120	0.490	2.548	0.270	5.930	9.390
	Surface	7.487	0.298	1.548	5.040	7.240	10.040
рН	25.00%	7.8115	0.0342	0.1776	7.5300	7.8000	8.1300
	75.00%	7.5604	0.0441	0.2289	7.1200	7.5700	7.9900
	Bottom	7.5615	0.0438	0.2274	7.1100	7.5700	8.0100
	Middle	7.7230	0.0378	0.1962	7.3900	7.7100	8.1400
	Surface	7.8496	0.0374	0.1946	7.5300	7.8500	8.1900
Turbidity (NTU)	25.00%	79.8	16.7	85.1	3.5	52.3	348.6
	75.00%	83.5	23.6	120.2	-3.9	18.1	439.5
	Bottom	105.4	28.0	142.7	-7.4	29.0	487.5
	Middle	83.0	18.6	94.7	-4.0	49.0	354.0
	Surface	70.9	15.4	78.3	-9.0	43.2	321.1
Total Depth (m)	Bottom	7.466	0.194	1.008	4.402	7.570	8.988
Secchi (m)	Surface	0.1799	0.0290	0.1504	0.0340	0.1420	0.7300

Table 13. Summary statistics of water profile for site B22.

	Depth of	0	SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.31	1.27	6.61	10.49	23.94	32.04
	75.00%	23.55	1.27	6.58	10.50	23.92	32.00
	Bottom	23.81	1.22	6.35	13.14	23.91	32.10
	Middle	23.38	1.26	6.54	10.45	23.93	31.94
	Surface	23.40	1.27	6.62	10.72	23.99	32.20
Salinity (psu)	25.00%	1.380	0.547	2.842	0.140	0.370	14.220
	75.00%	4.79	1.60	8.34	0.14	0.37	26.80
	Bottom	7.11	1.91	9.92	0.14	0.37	28.63
	Middle	2.316	0.953	4.955	0.140	0.370	22.050
	Surface	1.257	0.534	2.773	0.140	0.330	14.030
DO (mg/L)	25.00%	7.210	0.311	1.614	4.400	6.590	9.840
	75.00%	6.337	0.505	2.624	0.430	6.240	9.640
	Bottom	5.818	0.544	2.826	0.390	6.070	9.490
	Middle	6.876	0.383	1.991	1.840	6.550	9.750
	Surface	7.386	0.308	1.600	5.090	6.620	10.000
рН	25.00%	7.7937	0.0330	0.1717	7.5500	7.7600	8.1300
	75.00%	7.7185	0.0351	0.1825	7.3300	7.6900	8.0800
	Bottom	7.6663	0.0444	0.2307	7.2000	7.6500	8.0200
	Middle	7.7630	0.0311	0.1617	7.5100	7.7200	8.1000
	Surface	7.8081	0.0366	0.1899	7.5500	7.7600	8.1600
Turbidity (NTU)	25.00%	94.9	18.9	96.2	5.7	56.3	370.8
	75.00%	100.3	20.0	103.8	-1.4	58.4	402.8
	Bottom	104.4	21.6	112.1	-6.7	61.4	439.7
	Middle	100.0	19.1	99.3	0.5	60.0	394.0
	Surface	86.6	17.6	90.0	-6.7	53.4	356.8
Total Depth (m)	Bottom	4.830	0.268	1.394	3.042	4.402	7.558
Secchi (m)	Surface	0.1567	0.0291	0.1199	0.0200	0.1200	0.4610

Table 14. Summary statistics of water profile for site B25.

	Depth of	2	SE	or sile DS			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.35	1.28	6.63	10.48	24.02	32.38
	75.00%	23.59	1.27	6.62	10.45	24.14	32.37
	Bottom	23.62	1.27	6.60	10.45	24.35	32.36
	Middle	23.40	1.27	6.59	10.45	24.00	32.39
	Surface	23.45	1.29	6.69	10.47	24.14	32.70
Salinity (psu)	25.00%	0.901	0.438	2.278	0.140	0.290	11.850
	75.00%	4.80	1.67	8.70	0.14	0.31	24.42
	Bottom	5.19	1.81	9.38	0.14	0.31	25.08
	Middle	1.699	0.841	4.369	0.140	0.290	19.950
	Surface	0.873	0.422	2.191	0.140	0.290	11.390
DO (mg/L)	25.00%	7.302	0.319	1.659	3.520	7.240	9.890
	75.00%	6.200	0.572	2.975	0.160	6.430	9.890
	Bottom	6.169	0.575	2.988	0.220	6.430	9.920
	Middle	6.876	0.408	2.120	0.860	6.530	9.880
	Surface	7.503	0.316	1.641	3.530	7.310	9.890
рН	25.00%	7.8037	0.0351	0.1825	7.5200	7.8000	8.1000
	75.00%	7.6900	0.0456	0.2368	7.1800	7.6700	8.0700
	Bottom	7.6922	0.0462	0.2399	7.2000	7.6800	8.0700
	Middle	7.7707	0.0348	0.1807	7.4000	7.7900	8.0800
	Surface	7.8230	0.0383	0.1991	7.5200	7.8000	8.1500
Turbidity (NTU)	25.00%	100.0	18.8	97.9	7.6	54.4	367.4
-	75.00%	98.8	20.0	104.1	-1.1	53.1	368.7
	Bottom	128.5	29.4	152.6	1.0	69.5	694.8
	Middle	102.1	19.2	99.9	-0.7	53.9	369.6
	Surface	92.7	17.1	89.0	7.3	51.5	339.0
Total Depth (m)	Bottom	5.816	0.213	1.108	3.423	5.752	8.175
Secchi (m)	Surface	0.1568	0.0293	0.1492	0.0320	0.1200	0.7100

Table 15. Summary statistics of water profile for site B31.

	Depth of		SE	or sile DS			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.24	1.28	6.66	10.12	24.00	32.28
	75.00%	23.34	1.28	6.66	10.11	24.40	32.27
	Bottom	23.39	1.29	6.68	10.12	24.40	32.27
	Middle	23.30	1.28	6.65	10.11	24.15	32.28
	Surface	23.34	1.29	6.72	10.13	24.08	32.80
Salinity (psu)	25.00%	0.619	0.301	1.565	0.140	0.260	8.310
	75.00%	1.504	0.767	3.986	0.140	0.260	17.830
	Bottom	1.749	0.879	4.567	0.140	0.280	20.130
	Middle	1.237	0.644	3.345	0.140	0.260	15.120
	Surface	0.603	0.285	1.482	0.140	0.260	7.870
DO (mg/L)	25.00%	7.364	0.320	1.663	3.950	7.240	10.000
	75.00%	6.805	0.429	2.231	1.230	6.570	9.980
	Bottom	6.711	0.461	2.398	0.950	6.570	9.980
	Middle	6.918	0.402	2.088	1.490	6.580	10.000
	Surface	7.625	0.338	1.757	4.040	7.320	11.720
рН	25.00%	7.7789	0.0373	0.1937	7.4400	7.7700	8.1300
	75.00%	7.7270	0.0393	0.2040	7.3700	7.7300	8.0800
	Bottom	7.7185	0.0398	0.2070	7.3600	7.7400	8.0700
	Middle	7.7411	0.0388	0.2015	7.4000	7.7400	8.1200
	Surface	7.8130	0.0426	0.2212	7.4400	7.8000	8.2700
Turbidity (NTU)	25.00%	105.2	18.3	95.0	11.6	64.9	348.8
	75.00%	109.3	18.9	98.3	2.1	73.5	366.9
	Bottom	113.7	18.8	97.7	6.0	78.6	359.6
	Middle	107.2	18.7	97.0	2.5	70.1	357.1
	Surface	100.8	17.7	92.0	10.9	54.1	335.3
Total Depth (m)	Bottom	6.336	0.224	1.162	4.856	6.109	10.235
Secchi (m)	Surface	0.1331	0.0210	0.0864	0.0360	0.1180	0.3730

Table 16. Summary statistics of water profile for site B36.

	Depth of		SE	or she Di			
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.22	1.29	6.72	9.99	24.16	32.40
	75.00%	23.30	1.29	6.72	9.97	24.36	32.30
	Bottom	23.35	1.30	6.75	9.97	24.35	32.30
	Middle	23.23	1.29	6.71	9.99	24.13	32.30
	Surface	23.32	1.31	6.81	10.02	24.26	33.60
Salinity (psu)	25.00%	0.447	0.163	0.848	0.140	0.280	4.660
	75.00%	0.967	0.644	3.344	0.140	0.280	17.650
	Bottom	1.090	0.667	3.466	0.140	0.280	17.930
	Middle	0.599	0.313	1.626	0.140	0.280	8.720
	Surface	0.439	0.157	0.816	0.140	0.280	4.490
DO (mg/L)	25.00%	7.521	0.317	1.646	4.550	7.330	10.130
	75.00%	6.980	0.426	2.214	1.180	7.140	10.080
	Bottom	7.074	0.393	2.040	1.780	7.170	10.050
	Middle	7.366	0.321	1.670	4.390	7.320	10.100
	Surface	7.788	0.327	1.700	4.730	7.560	11.900
рН	25.00%	7.7796	0.0440	0.2284	7.1000	7.8100	8.1000
	75.00%	7.7459	0.0453	0.2351	7.0300	7.8000	8.0800
	Bottom	7.7407	0.0446	0.2315	7.0900	7.8000	8.0800
	Middle	7.7596	0.0441	0.2290	7.0500	7.8000	8.0900
	Surface	7.8130	0.0477	0.2476	7.1500	7.8400	8.2500
Turbidity (NTU)	25.00%	106.7	17.5	90.9	14.6	67.2	346.3
-	75.00%	117.5	19.1	99.1	0.0	96.2	363.3
	Bottom	137.1	21.6	112.1	3.9	89.8	406.3
	Middle	113.3	18.3	95.2	13.3	91.4	351.1
	Surface	97.4	16.1	83.4	14.3	60.2	312.2
Total Depth (m)	Bottom	7.5174	0.0903	0.4692	6.6130	7.5540	8.3390
Secchi (m)	Surface	0.1190	0.0164	0.0853	0.0280	0.1100	0.4300

Table 17. Summary statistics of water profile for site B42.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	20.767	0.783	5.250	13.780	18.860	31.080
	75.00%	21.434	0.797	5.348	13.300	20.180	32.040
	Bottom	21.488	0.800	5.366	13.330	20.740	32.070
	Middle	21.230	0.795	5.331	13.250	20.040	31.950
	Surface	20.770	0.742	4.976	15.200	19.160	29.520
Salinity (psu)	25.00%	8.71	1.27	8.53	0.17	4.66	27.59
	75.00%	18.24	1.53	10.30	0.17	22.48	29.09
	Bottom	19.05	1.59	10.65	0.17	23.93	31.09
	Middle	14.58	1.52	10.22	0.17	18.59	27.61
	Surface	6.30	1.05	7.07	0.17	3.06	27.60
DO (mg/L)	25.00%	6.784	0.327	2.195	2.080	6.870	10.130
	75.00%	5.167	0.398	2.670	0.300	5.340	9.730
	Bottom	5.032	0.398	2.672	0.320	5.310	9.810
	Middle	5.655	0.388	2.602	0.270	5.880	9.750
	Surface	7.793	0.343	2.299	3.530	7.810	11.900
рН	25.00%	7.8096	0.0250	0.1680	7.4400	7.7900	8.1300
	75.00%	7.7200	0.0351	0.2357	7.3300	7.7000	8.2200
	Bottom	7.7071	0.0347	0.2329	7.3300	7.6700	8.2200
	Middle	7.7433	0.0290	0.1944	7.3900	7.7600	8.1500
	Surface	7.8767	0.0323	0.2167	7.4400	7.8400	8.2900
Turbidity (NTU)	25.00%	21.48	4.69	29.30	-3.00	11.10	116.90
	75.00%	16.93	5.07	32.05	-3.90	4.95	141.60
	Bottom	28.33	5.91	37.37	-3.10	15.25	154.40
	Middle	20.99	5.56	35.15	-4.00	7.85	141.60
	Surface	21.33	4.83	30.16	-9.00	10.90	119.30
Total Depth (m)	Bottom	6.066	0.248	1.666	3.080	6.029	10.235
Secchi (m)	Surface	0.3572	0.0322	0.1849	0.0580	0.2990	0.7300

Table 18. Summary statistics of water profile for Average-Subsistence flow tier.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	18.70	1.87	9.72	9.99	13.15	32.50
	75.00%	18.95	1.79	9.29	9.97	13.57	32.80
	Bottom	19.17	1.75	9.08	9.97	13.70	32.70
	Middle	18.63	1.83	9.53	9.99	13.15	32.60
	Surface	18.86	1.87	9.70	10.02	13.19	33.60
Salinity (psu)	25.00%	3.93	1.23	6.41	0.14	1.03	27.31
	75.00%	12.28	2.43	12.64	0.14	8.35	32.34
	Bottom	13.99	2.51	13.03	0.14	11.07	32.98
	Middle	7.00	2.00	10.41	0.14	1.68	31.43
	Surface	1.961	0.445	2.313	0.140	0.940	8.290
DO (mg/L)	25.00%	7.939	0.430	2.236	2.700	9.070	10.110
	75.00%	6.838	0.614	3.193	0.160	8.390	10.080
	Bottom	6.451	0.616	3.202	0.220	8.010	10.050
	Middle	7.676	0.449	2.332	3.250	8.890	10.100
	Surface	8.618	0.248	1.290	6.060	9.090	10.130
рН	25.00%	7.7048	0.0429	0.2229	7.1000	7.7200	8.1000
	75.00%	7.6230	0.0439	0.2283	7.0300	7.6600	7.9800
	Bottom	7.5870	0.0418	0.2173	7.0900	7.5500	7.9800
	Middle	7.6963	0.0411	0.2133	7.0500	7.7200	7.9900
	Surface	7.7704	0.0521	0.2709	7.1500	7.7600	8.1300
Turbidity (NTU)	25.00%	82.4	11.6	60.4	6.9	65.6	186.5
	75.00%	70.6	13.4	69.4	5.1	39.1	199.6
	Bottom	122.3	43.3	225.0	6.5	69.5	1196.5
	Middle	79.7	12.2	63.3	6.9	63.2	189.0
	Surface	81.6	11.2	58.0	10.9	69.8	181.9
Total Depth (m)	Bottom	5.766	0.225	1.168	3.535	5.971	7.560
Secchi (m)	Surface	0.1611	0.0254	0.1106	0.0400	0.1190	0.4320

Table 19. Summary statistics of water profile for Average-Base flow tier.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	24.953	0.334	2.237	21.700	24.530	29.090
	75.00%	25.130	0.375	2.513	21.660	24.420	29.640
	Bottom	25.095	0.375	2.515	21.530	24.430	29.510
	Middle	25.034	0.352	2.363	21.700	24.400	29.020
	Surface	25.002	0.334	2.243	21.700	24.500	29.110
Salinity (psu)	25.00%	1.486	0.461	3.092	0.140	0.220	18.640
	75.00%	5.20	1.28	8.61	0.14	0.22	24.93
	Bottom	5.87	1.36	9.09	0.14	0.22	25.37
	Middle	3.466	0.989	6.635	0.140	0.220	23.270
	Surface	1.032	0.218	1.466	0.140	0.220	7.600
DO (mg/L)	25.00%	6.718	0.112	0.753	5.270	6.550	8.630
	75.00%	6.118	0.215	1.441	1.580	6.370	8.340
	Bottom	6.122	0.201	1.348	2.410	6.360	8.060
	Middle	6.421	0.144	0.966	3.510	6.420	8.450
	Surface	6.700	0.106	0.714	5.240	6.570	8.750
рН	25.00%	7.6400	0.0129	0.0862	7.5200	7.6300	7.9100
	75.00%	7.6098	0.0203	0.1361	7.1200	7.6200	8.0000
	Bottom	7.6164	0.0215	0.1443	7.1700	7.6200	8.0100
	Middle	7.6062	0.0161	0.1083	7.2100	7.6000	7.8300
	Surface	7.6620	0.0148	0.0995	7.5300	7.6300	7.9200
Turbidity (NTU)	25.00%	130.8	16.8	112.8	8.4	129.4	370.8
	75.00%	143.3	19.8	132.7	2.5	127.1	439.5
	Bottom	178.9	25.7	172.6	-7.4	157.8	694.8
	Middle	133.2	17.6	118.3	5.3	129.0	394.0
	Surface	122.2	16.0	107.5	-6.7	121.5	356.8
Total Depth (m)	Bottom	6.377	0.250	1.677	3.037	6.464	9.936
Secchi (m)	Surface	0.1562	0.0141	0.0795	0.0280	0.1490	0.3500

Table 20. Summary statistics of water profile for Average-3ps flow tier.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.682	0.931	6.243	13.280	26.460	31.770
	75.00%	24.382	0.924	6.197	11.830	26.950	33.160
	Bottom	24.467	0.923	6.191	12.130	27.050	33.090
	Middle	24.140	0.932	6.255	13.120	26.590	33.370
	Surface	23.660	0.932	6.252	13.090	26.290	31.700
Salinity (psu)	25.00%	4.424	0.824	5.528	0.340	1.880	22.290
	75.00%	15.09	1.74	11.67	0.34	20.86	31.40
	Bottom	16.42	1.78	11.97	0.34	22.54	33.87
	Middle	10.54	1.59	10.68	0.34	6.12	30.46
	Surface	3.232	0.534	3.580	0.340	1.750	16.030
DO (mg/L)	25.00%	7.041	0.260	1.745	4.300	6.230	9.840
	75.00%	5.299	0.420	2.817	0.280	5.710	9.800
	Bottom	4.931	0.451	3.022	0.300	5.640	9.790
	Middle	6.124	0.341	2.285	0.510	5.860	9.820
	Surface	7.614	0.211	1.416	5.750	7.110	9.890
рН	25.00%	7.8989	0.0220	0.1478	7.6100	7.8900	8.1300
	75.00%	7.7516	0.0393	0.2639	7.1300	7.7700	8.0800
	Bottom	7.7142	0.0418	0.2805	7.1100	7.7500	8.0900
	Middle	7.8209	0.0286	0.1920	7.4200	7.8300	8.1000
	Surface	7.9584	0.0204	0.1372	7.6500	7.9600	8.1900
Turbidity (NTU)	25.00%	25.94	2.74	18.37	-0.90	25.00	66.40
	75.00%	23.18	3.75	25.15	-1.70	10.80	96.20
	Bottom	36.27	5.47	36.25	0.30	21.00	177.20
	Middle	23.80	3.38	22.70	-1.70	15.60	96.50
	Surface	24.40	2.62	17.55	0.10	23.20	60.20
Total Depth (m)	Bottom	6.537	0.236	1.586	3.042	6.330	9.477
Secchi (m)	Surface	0.2217	0.0172	0.1153	0.1020	0.1830	0.6120

Table 21. Summary statistics of water profile for Wet-Subsistence flow tier.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	23.453	0.775	6.148	14.120	24.000	30.800
	75.00%	23.587	0.767	6.089	14.110	24.000	31.880
	Bottom	23.570	0.769	6.107	14.120	23.990	31.960
	Middle	23.476	0.772	6.130	14.110	24.000	31.200
	Surface	23.578	0.778	6.176	14.170	24.080	31.800
Salinity (psu)	25.00%	1.975	0.445	3.529	0.140	0.370	19.320
	75.00%	8.69	1.35	10.73	0.14	0.37	34.87
	Bottom	10.04	1.48	11.71	0.22	0.41	34.01
	Middle	4.90	1.05	8.30	0.14	0.37	34.44
	Surface	1.231	0.203	1.611	0.140	0.370	6.530
DO (mg/L)	25.00%	7.357	0.195	1.545	4.800	7.250	9.520
	75.00%	6.765	0.251	1.995	0.860	7.000	9.500
	Bottom	6.181	0.319	2.529	0.450	6.460	9.490
	Middle	7.118	0.213	1.693	3.830	7.220	9.510
	Surface	7.632	0.185	1.465	5.030	7.390	9.520
рН	25.00%	7.8421	0.0138	0.1096	7.6300	7.8300	8.1200
	75.00%	7.8038	0.0227	0.1803	7.1900	7.8100	8.2400
	Bottom	7.7798	0.0253	0.2012	7.1500	7.8100	8.2400
	Middle	7.8225	0.0164	0.1302	7.4700	7.8200	8.1700
	Surface	7.8706	0.0124	0.0985	7.6500	7.8600	8.1100
Turbidity (NTU)	25.00%	96.6	10.4	82.5	8.7	68.3	281.5
	75.00%	97.7	12.1	96.0	6.4	63.3	296.3
	Bottom	191.0	69.1	548.7	-4.8	78.6	4361.6
	Middle	99.0	11.3	89.8	5.0	68.0	288.1
	Surface	88.36	9.55	75.79	10.30	63.10	268.90
Total Depth (m)	Bottom	6.893	0.162	1.283	3.889	6.947	9.542
Secchi (m)	Surface	0.11403	0.00863	0.06629	0.02000	0.10200	0.37600

Table 22. Summary statistics of water profile for Wet-Base flow tier.

	Depth of		SE				
Variable	Readings	Mean	Mean	StDev	Minimum	Median	Maximum
Temperature (°C)	25.00%	31.659	0.120	0.509	30.700	31.570	32.380
	75.00%	31.337	0.263	1.116	29.040	31.390	33.510
	Bottom	31.317	0.269	1.139	29.010	31.400	33.450
	Middle	31.425	0.176	0.747	29.870	31.400	32.390
	Surface	31.868	0.120	0.510	31.050	31.760	32.690
Salinity (psu)	25.00%	3.08	1.28	5.41	0.28	0.32	20.28
	75.00%	12.68	3.43	14.54	0.28	0.36	34.63
	Bottom	13.89	3.46	14.68	0.28	6.64	34.65
	Middle	7.27	2.76	11.72	0.28	0.33	35.51
	Surface	1.531	0.449	1.906	0.280	0.320	6.010
DO (mg/L)	25.00%	6.278	0.147	0.623	5.350	6.070	7.460
	75.00%	5.061	0.393	1.667	1.180	5.570	7.400
	Bottom	5.189	0.373	1.581	2.220	5.535	7.370
	Middle	5.948	0.202	0.858	4.450	5.930	7.460
	Surface	6.632	0.139	0.591	6.030	6.375	7.720
рН	25.00%	7.8406	0.0383	0.1625	7.6200	7.8200	8.1000
	75.00%	7.8006	0.0412	0.1749	7.5600	7.7450	8.0700
	Bottom	7.7678	0.0433	0.1836	7.5500	7.6800	8.0700
	Middle	7.8367	0.0425	0.1804	7.6000	7.8300	8.1400
	Surface	7.8789	0.0413	0.1751	7.6200	7.8850	8.1600
Turbidity (NTU)	25.00%	91.9	21.9	92.9	13.1	53.6	273.7
	75.00%	109.7	26.6	112.9	11.8	57.3	324.8
	Bottom	124.5	29.1	123.5	17.3	66.3	398.5
	Middle	99.3	24.2	102.6	9.2	54.8	301.1
	Surface	74.3	17.6	74.7	14.7	47.3	266.6
Total Depth (m)	Bottom	7.224	0.256	1.087	4.402	7.543	8.984
Secchi (m)	Surface	0.1179	0.0178	0.0666	0.0500	0.1005	0.2900

Table 23. Summary statistics of water profile for Wet-2ps flow tier.

APPENDIX F:

SURFACE WATER GRAB LABORATORY RESULTS

		-		-		-	_	
				0				
Table 24. Lab	oratory	rosults	for su	rtaco	water c	rah	samples	
Tubic 24. Lub	or alor y	resuits	. <i>jor s</i> a	ijuce	maier g	srub i	sumpies	•

Date	Site	Nitrate+Nitrite-N	TKN	Total P	TSS	Chlorophyll-a
	-	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ppb)
11/11/2014	B42	0.500	2.50	0.192	12	
	B31	0.560	1.3	0.210	9.4	
	B22	0.430	1.2	0.250	9.6	
	B10	0.320	1.5	0.060	11	
	B01	1.60	0.70	0.780	36	
12/09/2014	B42	1.040	1.70	0.310	114	
	B31	1.30	0.70	0.370	97	
	B22	1.370	0.90	0.470	38.5	
	B10	1.330	0.2	0.480	19	
	B01	1.330	< 0.2	0.154	14.8	
01/06/2015	B42	1.100	1.3	0.440	118	
	B31	1.260	1.34	0.190	121	
	B22	0.970	0.73	0.300	122	
	B10	1.250	1.00	0.260	55	
	B01	1.260	0.60	0.250	38.5	
02/04/2015	B42	0.640	1.20	0.320	166	
	B31	0.670	1.30	0.390	204	
	B22	0.710	1.30	0.420	152	
	B10	0.740	1.20	0.480	150	
	B01	0.820	0.60	0.128	73	
02/18/2015	B42	1.010	2.50	0.170	43.5	
	B31	0.930	2.60	0.180	39.3	
	B22	0.950	1.90	0.200	32.3	
	B10	1.240	0.60	0.270	40.2	
	B01	0.620	0.50	0.130	33.7	
04/01/2015	B42	1.460	2.00	0.670	192	
	B31	1.580	2.20	1.410	182	
	B22	1.700	1.80	1.900	154	
	B10	1.680	2.00	0.430	120	
	B01	1.570	1.20	0.460	65.3	
04/29/2015	B42	1.240	2.60	0.330	184	
0 1/20/2010	B31	1.340	1.10	0.510	24.5	
	B22	1.350	2.30	1.190	200	
	B10	1.320	1.80	0.530	37.9	
	B01	1.490	1.30	0.740	203	
05/06/2015	B42	0.870	0.60	0.470	395	
00,00,2010	B31	0.930	3.70	0.120	454	
	B22	1.960	2.10	0.640	343	
	B10	0.780	2.70	0.440	207	
	B10 B01	0.840	1.00	0.220	140	
08/12/2015	B42	0.260	1.10	0.130	17	
00/12/2010	B31	0.380	0.50	0.090	18	
	B22	0.400	0.60	0.090	17.8	
	B22 B10	0.400	0.80	0.090	11.2	
	B01	0.470	2.00	0.060	20.8	
08/25/2015	B42	0.260	2.00	0.270	66.5	
			1 2.00	1.0.770	00.0	1

Date	Site	Nitrate+Nitrite-N	TKN	Total P	TSS	Chlorophyll-a
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ppb)
	B22	0.350	1.30	0.140	61.5	
	B10	0.330	1.40	0.160	45.3	
	B01	0.450	1.30	0.150	30.7	
12/1/2016	B42	1.38	1.1	0.41	63	22.3
	B31	1.18	1.3	0.27	67	24.8
	B22	1.38	1.2	0.37	49	20.9
	B10	0.85	0.8	0.38	28.4	9.6
	B01	0.23	1.2	0.31	18.4	9.1
12/20/2016	B42	0.82	2.8	0.25	85	11.1
	B31	0.82	1.7	0.38	69	12.7
	B22	0.73	2.9	0.32	62.8	10.6
	B10	1.61	1.2	0.76	55.2	5.5
	B01	0.64	1.5	0.21	44	5.3
01/31/2017	B42	0.85	0.6	0.54	366	< 3
	B31	0.89	0.6	0.98	392	< 3
	B22	0.99	0.5	1.15	332	< 3
	B10	0.91	0.3	0.34	226	3.1
	B01	0.96	1.3	0.29	83.5	< 3
03/15/2017	B42	0.87	1.8	0.2	123	11.5
	B31	0.89	0.6	0.25	125	11.7
	B22	0.83	1	0.22	74	11.8
	B10	0.89	0.6	0.23	66	10.8
	B01	0.87	0.9	0.21	53	11.5
5/1/2017	B01	0.58	0.6	0.188	37.6	4.1
	B10	0.56	0.8	0.314	38.9	3.8
	B22	0.57	0.8	0.31	72.6	< 3
	B31	0.61	1.8	0.566	86.1	< 3
	B42	0.61	1	0.724	256	4.3
5/24/2017	B01	< 0.02	0.6	0.33	24.5	< 3
	B10	0.05	0.4	0.34	28	10.1
	B22	< 0.02	1	0.51	35	7
	B31	0.09	0.7	0.96	51	9.6
	B42	0.19	1	0.69	52.7	31.7
6/27/2017	B42	0.41	0.7	0.35	159	4.8
	B31	0.38	1.5	0.27	128	< 3
	B22	0.57	1.7	0.22	80.4	< 3
	B10	0.64	1.9	0.13	28.5	< 3
	B01	0.47	0.6	0.29	21.8	3.6
7/31/2017	B42	< 0.02	0.9	0.33	43.7	28.4
	B31	0.3	< 0.2	0.32	29.3	11.8
	B22	0.3	0.3	0.22	23.7	7
	B10	0.3	0.6	0.11	17.2	12
	B01	0.3	0.2	0.09	13.6	10.8
9/20/2017	B42	0.19	1.7	0.14	84	16
	B31	0.99	1.6	0.1	54	17.3
	B22	0.03	1.5	0.9	37.5	15.6
	B10	0.14	1.1	0.12	29	21.1
	B01	0.19	1.2	0.09	28	11.5
10/18/2017	B01	0.66	0.5	0.3	15.7	14.7
	B10	0.63	0.7	0.31	18	20.9
	B22	0.49	0.8	0.28	24.5	32.2
	B31	0.38	0.9	0.44	33	26.7
	B42	0.34	0.8	0.43	31.5	42.8
9/19/2018	G3	0.18	0.2	1.05	25.5	3.4

Date	Site	Nitrate+Nitrite-N	TKN	Total P	TSS	Chlorophyll-a
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ppb)
	G2	< 0.02	0.5	1.68	25	5.8
	G1	0.22	1	6.93	34	< 3
09/27/2018	B42	0.21	0.8	1.33	22.6	12
	B31	0.61	1	2.3	15.5	6.2
	B22	0.18	0.9	1.2	13.9	< 3
	B10	0.2	0.7	2.95	11.8	4.6
	B01	0.22	0.9	1.55	13.1	3.4
03/12/2019	B01	0.98	< 1	0.23	29.6	4.1
	B10	0.82	< 1	0.3	40.8	7.2
	B22	0.77	< 1	0.13	54.00	6.7
	B31	0.7	1.3	0.25	90.5	8.4
	B42	0.72	1	0.2	103	5
07/11/2019	B42	0.48	0.9	0.52	245	9
	B31	0.56	1	0.21	99.3	10.2
	B22	0.73	0.8	0.33	78	3.5
	B10	0.46	0.4	0.14	56.8	NA
	B01	0.53	< 0.2	0.13	29.6	3.4
07/31/2019	B42	0.06	1.2	1.53	25.2	29.1
	B31	0.04	1.6	0.17	33.2	29.6
	B22	0.03	< 1	0.39	33.6	NA
	B10	0.03	2.1	0.4	55.6	25.2
	B01	0.06	< 1	0.18	54	16.6
09/05/2019	B01	0.2	1.1	0.129	23.5	19.5
	B10	0.25	1	0.131	18	19.7
	B22	0.31	1	0.117	19.5	19.2
	B31	0.18	1.7	0.117	31	22.8
	B42	0.05	1.3	0.118	42	26.9
10/17/2019	B10	< 0.02	< 1	0.106	16	19.5
	B01	0.07	< 1	0.142	29.2	13.5
	B22	0.1	1	0.101	16.8	17.3
	B31	0.06	1	0.0824	17.6	30.5
	B42	< 0.02	1.2	< 0.06	36	29.6
12/04/2019	G3	< 0.02	0.3	< 0.06	12.6	10.8
	G2	< 0.02	0.5	< 0.06	12.6	5.3
	G1	< 0.02	0.4	< 0.06	14	8.9
12/05/2019	B01	0.15	0.9	0.0777	24.8	4.1
	B10	0.02	1	0.0775	22.4	4.3
	B22	< 0.02	1	< 0.06	20	4.1
	B31	0.05	1	< 0.06	16.4	8.4
	B42	0.12	1.3	0.0964	38.1	5

APPENDIX G:

NEKTON COLLECTION SUMMARY STATISTICS

Table 25. Beam trawl catch data for each sample period since 2014.

Scientific Name	Common Name		Total		
		2014- 2015	2016- 2017	2018- 2019	Catch
Farfantepenaeus aztecus	Brown Shrimp	42	4	1	4
Farfantepenaeus duorarum	Pink Shrimp	2			
Litopenaeus setiferus	White Shrimp	279	58	20	35
Rimapenaeus similis	Roughback Shrimp	1			
Acetes americanus	Sergestid Shrimp	17			1
carcinus	Bigclaw River Shrimp	1			
ohione	Ohio River Shrimp	92	130	64	28
Macrobrachium rosenbergii	River Prawn		1		
Palaemonetes pugio	Daggerblade Grass Shrimp	64	92	15	17
vulgaris	Marsh Grass Shrimp	25			2
	1		1.4		_
Callinectes similis	Blue Crab Lesser Blue Crab	52 10	14	11	7
harrisii	Estuarine mud crab	1			
			6	7	1
			4.0		
		-			6
-	Gult Menhaden	669	48	425	114
cepedianum	Gizzard Shad		-	2	
			5	1	
· ·					
			10	1	
2 0	Kibbon Shiner		19		1
hyostoma	Shoal Chub		6	1	
-					
		51		2	5
		2	1		
		2			
			1	1	
		0	~		1
ictaturus furcatus	Channel Catfish	9 5	6	15	2
	FarfantepenaeusaztecusFarfantepenaeusduorarumLitopenaeus setiferusRimapenaeus similisAcetes americanusMacrobrachiumcarcinusMacrobrachiumohioneMacrobrachiumrosenbergiiPalaemonetes pugioPalaemonetes spp.Tozeuma carolinenseCallinectes similisRithropanopeusharrisiiLibellulidae spp.Albula vulpesAnchoa mitchilliBrevoortia patronusDorosomacepedianumAlosine spp.Cyprinella lutrensisCyprinella venustaLythrurus fumeusMacrhybopsis	Farfantepenaeus aztecusBrown Shrimpfarfantepenaeus duorarumPink ShrimpLitopenaeus setiferus Rimapenaeus similis Acetes americanusWhite Shrimp Roughback ShrimpMacrobrachium ohioneBigclaw River Sergestid ShrimpMacrobrachium ohioneOhio River ShrimpMacrobrachium rosenbergiiRiver PrawnPalaemonetes pugioMarsh Grass ShrimpPalaemonetes vulgarisMacrobrachium spp. Palaemonetes spp.Tozeuma carolinense Callinectes sapidus harrisiiMacrobrachium spp. Palaemonetes spp.Tozeuma carolinense Callinectes similisSkimmer Dragonfly Blue Crab Lesser Blue CrabRibellulidae spp. Albula vulpesSkimmer Dragonfly Bay Anchovy Gulf MenhadenDorosoma cepedianum Alosine spp.Gizzard Shad Shiner Blacktail Shiner Blacktail Shiner Ribbon ShinerNotropis buchanani Pimephales vigilax Cyprinidae spp. Ariops sielisShoal ChubNotropis buchanani Pimephales vigilax Ariopsis felisGhost ShinerPiropapichthys spp. Ariopsis felisSharmer Catfish Hardhead Catfish	Z014- 2015Farfantepenaeus aztecusBrown Shrimp42Farfantepenaeus duorarumPink Shrimp2Litopenaeus setiferusWhite Shrimp1Acetes americanusSergestid Shrimp1Macrobrachium ohioneBigclaw River1Macrobrachium ohioneOhio River Shrimp92Macrobrachium rosenbergiiDaggerblade Grass Shrimp64Palaemonetes vulgarisMarsh Grass Shrimp25Macrobrachium spp.Palaemonetes spp. Palaemonetes spp.6Tozeuma carolinense Callinectes sajdusBlue Crab52Callinectes similis Lesser Blue Crab10Rithropanopeus harrisiEstuarine mud crab1Libellulidae spp. Albula vulpesSkimmer Dragonfly19Brevoortia patronus Cyprinella lutrensis Koripis buchanani Macripis Shoal Chub669Dorosoma cepedianumGizzard Shad669Dorosoma Cyprinella lutrensis KostomaGost Shiner Blacktail Shiner10Macrhybopsis hyostomaShoal Chub51Notropis buchanani Pimephales vigilax HyostomaGlost Shiner Pirindae Lake Chubsucker21Pirerygoplichthys spp. Armored Catfish Hardhead Catfish51	Zoll4- 2015Zoll6- 2017Farfantepenaeus attecusBrown Shrimp424Farfantepenaeus duorarumPink Shrimp24Litopenaeus setiferus Rimapenaeus similisWhite Shrimp158Rimapenaeus similis Acetes americanusRoughback Shrimp17Macrobrachium ohioneBigclaw River Shrimp17Macrobrachium ohioneOhio River Shrimp92130Macrobrachium rosenbergiiDaggerblade Grass Shrimp6492Palaemonetes pulgarisMarsh Grass Shrimp257Macrobrachium spp. Palaemonetes spp. Tozeuma carolinense harrisiiMarsh Grass Shrimp1Callinectes sapidus harrisiiBlue Crab5214Callinectes similis harrisiiEstuarine mud crab1Anchoa mitchilli Bay Anchovy1940Brevoortia patronus Gulf Menhaden66948Dorosoma cepedianumGizzard Shad6Alosine spp. Alosine spp.55Cyprinella lutrensis Red Shiner1940Alosine spp. Alosine spp.55Cyprinella venusta Blacktail Shiner19Macrobrasi Anotopsis Cyprindla esp.61Paraemonetes PyostomaShoal Chub6Notropis buchanani Pimephales vigilax Pineysinda61Pimephales vigilax Pimephales vigilax Pimephales vigilax Pimephales vigilax Pimephales vigilax Pimephales vigilax Pimephales vigi	

Family	Scientific Name	Common Name	San	npling Per	riod	Total
			2014-	2016-	2018-	Catch
			2015	2017	2019	
Mugilidae	Mugil cephalus	Striped Mullet	126	86	19	231
Atherinopsidae	Menidia beryllina	Inland Silverside		3		3
Poeciliidae	Gambusia affinis	Western Mosquitofish	1	8		9
Centrarchidae	Lepomis cyanellus	Green Sunfish	1			1
	Lepomis macrochirus	Bluegill	2			2
	Lepomis spp.	Lepomis spp.		1		1
Carangidae	Caranx hippos	Crevalle Jack		1		1
Gerreidae	Eucinostomus argenteus	Spotfin Mojarra		1		1
	Eucinostomus melanopterus	Flagfin Mojarra	6		1	7
Sparidae	Lagodon rhomboides	Pinfish	4			4
Sciaenidae	Larimus fasciatus	Banded Drum	1			1
	Leiostomus xanthurus	Spot	4			4
	Micropogonias undulatus	Atlantic Croaker	2680	184	13	2877
Gobiidae	Ctenogobius shufeldti	Freshwater Goby	2			2
	Ctenogobius boleosoma	Darter Goby	88	4		92
	Gobiosoma bosc	Naked Goby	1	6		7
	Gobiidae spp.	Gobiidae spp.	2			2
Paralichthyidae	Citharichthys spilopterus	Bay Whiff	10	5		15
	Paralichthyidae spp.	Paralichthyidae		2		2
Cynoglossidae	Symphurus plagiusa	Blackcheek Tonguefish	7			7
Unconfirmed	Unconfirmed	Unconfirmed			1	1
Grand Total			4285	734	602	5621

Family	Scientific Name	Common Name				ling Per	iod	Tota
			B01	B10	B22	B31	B42	
Penaeidae	Farfantepenaeus aztecus	Brown Shrimp	8	35	4			47
	Farfantepenaeus duorarum	Pink Shrimp	1	1				2
	Litopenaeus setiferus	White Shrimp	54	200	91	8	4	357
	Rimapenaeus similis	Roughback Shrimp	1					1
Sergestidae	Acetes americanus	Sergestid Shrimp	17					17
Palaemonidae	Macrobrachium carcinus	Bigclaw River Shrimp		1				1
	Macrobrachium ohione	Ohio River Shrimp	1	1	8	92	184	28
	Macrobrachium rosenbergii	River Prawn					1	
	Palaemonetes pugio	Daggerblade Grass Shrimp	17	34	34	24	62	17
	Palaemonetes vulgaris Macrobrachium	Marsh Grass Shrimp Macrobrachium	6	9	3	7		2
	spp.	spp.	1					
	Palaemonetes spp. Tozeuma	Palaemonetes spp.	5			1		
Hippolytidae	carolinense Callinectes	Arrow Shrimp	1					
Portunidae	sapidus Callinectes	Blue Crab Lesser Blue	2	7	33	23	12	7
	similis Rithropanopeus	Crab Estuarine Mud	3	3	2		2	1
Panopeidae	harrisii	Crab Skimmer			1			
Libellulidae Albulidae	Libellulidae spp. Albula vulpes	Dragonfly Bonefish	1	1	4	5	3	1
Engraulidae	Anchoa mitchilli Brevoortia	Bay Anchovy	17	5	9	15	15	6
Clupeidae	patronus Dorosoma	Gulf Menhaden	296	560	72	140	74	114
	cepedianum Alosine spp.	Gizzard Shad Alosine spp.		5	1	1		
Cyprinidae	Cyprinella lutrensis	Red Shiner			1			
	Cyprinella venusta	Blacktail Shiner			1			
	Lythrurus fumeus Macrhybopsis	Ribbon Shiner Shoal Chub				1 2	18 5	1
	hyostoma	Silvai Cliuv				Z	3	

Table 26. Beam trawl catch data for each sample site since 2014.

Family	Scientific Name	Common Name			Sampl	ling Per	iod	Tota
			B01	B10	B22	B31	B42	
	Notropis buchanani	Ghost Shiner				2		2
	Pimephales vigilax	Bullhead Minnow			5	43	6	54
	Cyprinidae spp.	Cyprinidae spp.		1				
Catostomidae	Erimyzon sucetta	Lake Chubsucker	1			1		2
Loricariidae	Pterygoplichthys spp.	Armored Catfish					1	
Ariidae	Ariopsis felis	Hardhead Catfish		1				
Ictaluridae	Ictalurus furcatus Ictalurus	Blue Catfish			10	12	6	2
	punctatus	Channel Catfish			1		5	
Mugilidae Atherinopsidae	Mugil cephalus Menidia beryllina	Striped Mullet Inland Silverside		9 1	190 1	31 1	1	23
Poeciliidae	Gambusia affinis	Western Mosquitofish					9	
Centrarchidae	Lepomis cyanellus	Green Sunfish					1	
	Lepomis macrochirus	Bluegill				1	1	
Carangidae	Lepomis spp. Caranx hippos	Lepomis spp. Crevalle Jack		1			1	
Gerreidae	Eucinostomus argenteus	Spotfin Mojarra		1				
	Eucinostomus melanopterus	Flagfin Mojarra			2	3	2	
Sparidae	Lagodon rhomboides	Pinfish	4					
Sciaenidae	Larimus fasciatus	Banded Drum	1					
	Leiostomus xanthurus	Spot	3	1				
	Micropogonias undulatus	Atlantic Croaker	2120	303	118	14	322	287
Gobiidae	Ctenogobius shufeldti	Freshwater Goby			1	1		
	Ctenogobius boleosoma	Darter Goby	9	14	28	29	12	9
	Gobiosoma bosc Gobiidae spp.	Naked Goby Gobiidae spp.		5		2	2	
Paralichthyidae	Citharichthys spilopterus	Bay Whiff	6	1	4		4	1
	Paralichthyidae spp.	Paralichthyidae spp.	2					
Cynoglossidae	Symphurus plagiusa	Blackcheek Tonguefish	5	1	1			
Unconfirmed	Unconfirmed	Unconfirmed				1		
Grand Total			2582	1201	625	460	753	562

Family	Scientific Name	Common Name		mpling Y		Total
			2014- 2015	2016- 2017	2018- 2019	Catch
Loliginidae	Lolliguncula brevis Taphromysis	Atlantic Brief Squid	3	2		4
Mysidae	louisianae	Mysid Shrimp			4	4
Penaeidae	Farfantepenaeus aztecus	Brown Shrimp	3	1009	25	103
	Farfantepenaeus duorarum	Pink Shrimp	2	1		·
	Litopenaeus setiferus	White Shrimp	146	310	1370	182
	Rimapenaeus similis	Roughback Shrimp	1			
Sergestidae	Acetes americanus	Sergestid Shrimp	105			10
Palaemonidae	Macrobrachium ohione	Ohio River Shrimp	157	211	72	44
	Macrobrachium rosenbergii	River Prawn		253		25
	Palaemonetes pugio	Daggerblade Grass Shrimp	14	18		3
	Palaemonetes vulgaris	Marsh Grass Shrimp	2	1		
	Macrobrachium spp.	Macrobrachium spp.		229		22
Hippolytidae	Tozeuma carolinense	Arrow Shrimp	1			
		Thinstripe Hermit			1	
Diogenidae	Clibanarius vittatus	Crab			1	
Epialtidae	Libinia emarginata	Common Spider Crab		1		
	Libinia spp.	Spider Crab		1	1	
Portunidae	Callinectes sapidus	Blue Crab	60	395	55	51
Menippidae	Menippe adina	Gulf Stone Crab			1	
Panopeidae	Rithropanopeus harrisii	Estuarine Mud Crab	1			
Dasyatidae	Dasyatis americana	Southern Stingray		1		
Lepisosteidae	Atractosteus spatula	Alligator Gar			2	:
Engraulidae	Anchoa mitchilli	Bay Anchovy	1207	647	2086	394
Clupeidae	Brevoortia patronus	Gulf Menhaden	31	56	50	13
	Dorosoma		6	12	24	4
	cepedianum	Gizzard Shad				
	Dorosoma petenense Maanlach an air	Threadfin Shad	1	11	23	3
Cyprinidae	Macrhybopsis hyostoma	Shoal Chub		1		
Cyprinidae	Cyprinidae	Cyprinidae		4		
Catostomidae	Ictiobus bubalus	Smallmouth Buffalo	1			
Ariidae	Ariopsis felis	Hardhead Catfish	61	112	121	294
	Bagre marinus	Gafftopsail Catfish	29	53	215	29

Table 27. Otter trawl catch data for each sample period since 2014.

Family	Scientific Name	Common Name	Sa	mpling Y	ear	Total
-			2014-	2016-	2018-	Catch
Ictaluridae	Ameirus melas	Black Bullhead	2015	2017	2019	1
Icialuriaae			-	1140	1.001	
	Ictalurus furcatus	Blue Catfish	956	1142	1601	3699
	Ictalurus punctatus	Channel Catfish	66	7	2	75
	Pylodictis olivaris	Flathead Catfish		1		1
Ophidiidae	Ophidion josephi	Crested Cusk Eel	_	_	1	1
Mugilidae	Mugil cephalus	Striped Mullet	5	6	6	17
Triglidae	Prionotus tribulus	Bighead Searobin	2			2
Centrarchidae	Lepomis gulosus	Warmouth	1			1
Carangidae	Caranx hippos	Crevalle Jack		1	1	2
	Chloroscombrus chrysurus	Atlantic Bumper	2	1		3
	Selene vomer	Lookdown	1			1
Lutjanidae	Lutjanus griseus	Mangrove Snapper	7			7
Gerreidae	Eucinostomus argenteus	Spotfin Mojarra		3	2	5
	Eucinostomus melanopterus	Flagfin Mojarra	123			123
	Gerres cinereus	Yellowfin Mojarra	8			8
Sparidae	Archosargus probatocephalus	Sheepshead	6	10		16
	Lagodon rhomboides	Pinfish			2	2
	Polydactylus				-	
Polynemidae	octonemus	Atlantic Threadfin		1		1
	Aplodinotus					•
Sciaenidae	grunniens	Freshwater Drum		1	1	2
	Bairdiella chrysoura	Silver Perch	35	71	76	182
	Cynoscion arenarius	Sand Seatrout	90	241	387	718
	Cynoscion nebulosus	Spotted Seatrout	2		7	9
	Larimus fasciatus	Banded Drum	5		2	7
	Leiostomus xanthurus	Spot	18	7	137	162
	Menticirrhus americanus	Southern Kingfish			1	1
	Micropogonias undulatus	Atlantic Croaker	6830	4883	5262	16975
	Pogonias cromis	Black Drum	3	21		24
	Sciaenops ocellatus	Red Drum		1	1	2
	Stellifer lanceolatus	Star Drum	427	2099	4005	6531
	Sciaenidae spp.	Sciaenid		1		1
Gobiesocidae	Gobiesox strumosus	Skilletfish	1			1
Gobiidae	Ctenogobius boleosoma	Darter Goby	1	2	1	4
	Gobioides broussonnetii	Violet Goby		3	2	5

Family	Scientific Name	Common Name	Sa	mpling Y	ear	Total
			2014-	2016-	2018-	Catch
			2015	2017	2019	
	Gobionellus oceanicus	Highfin Goby	1			1
	Gobiosoma bosc	Naked Goby		1		1
Ephippidae	Chaetodipterus faber	Atlantic Spadefish	2	2	3	7
Trichiuridae	Trichiurus lepturus	Ribbonfish	1	6	5	12
Paralichthyidae	Citharichthys spilopterus	Bay Whiff	5	1	14	20
	Paralichthys lethostigma	Southern Flounder	8	1	4	13
	Paralichthyidae spp.	Paralichthyidae		1		1
Achiridae	Achirus lineatus	Lined Sole	5			5
	Gymnachirus texae	Fringed Sole			3	3
	Trinectes maculatus	Hogchoker	11	20	3	34
Cynoglossidae	Symphurus plagiusa	Blackcheek Tonguefish	1		7	8
Tetraodontidae	Sphoeroides nephelus	Southern Puffer		1		1
	Sphoeroides parvus	Least Puffer			2	2
Unconfirmed	Unconfirmed	Unconfirmed		1	2	3
Grand Total			10455	11864	15590	37909

Family	Scientific Name	Common Name			Site			Total
			B01	B10	B22	B31	B42	Catcl
Loliginidae	Lolliguncula brevis	Atlantic Brief Squid	4	1				
Mysidae	Taphromysis louisianae	Mysid Shrimp	4					
Penaeidae	Farfantepenaeus aztecus	Brown Shrimp	957	80				103
	Farfantepenaeus duorarum	Pink Shrimp	3					
	Litopenaeus setiferus	White Shrimp	523	752	112	439		182
	Rimapenaeus similis	Roughback Shrimp	1					
Sergestidae	Acetes americanus	Sergestid Shrimp	25	61	19			10
Palaemonidae	Macrobrachium ohione	Ohio River Shrimp	6	1	52	296	85	44
	Macrobrachium rosenbergii	River Prawn				185	68	25
	Palaemonetes pugio	Daggerblade Grass Shrimp	15	1	4	10	2	•
	Palaemonetes vulgaris	Marsh Grass Shrimp	3					
	Macrobrachium spp.	Macrobrachium spp.			1	138	90	22
Hippolytidae	Tozeuma carolinense	Arrow Shrimp	1					
Diogenidae	Clibanarius vittatus	Thinstripe Hermit Crab	1					
Epialtidae	Libinia emarginata Libinia spp.	Common Spider Crab Spider Crab	1 2					
Portunidae	Callinectes sapidus	Blue Crab	399	22	42	35	12	51
Menippidae	Menippe adina	Gulf Stone Crab	1					
Panopeidae	Rithropanopeus harrisii	Estuarine Mud Crab					1	
Dasyatidae	Dasyatis americana	Southern Stingray	1					
Lepisosteidae	Atractosteus spatula	Alligator Gar				2		
Engraulidae	Ânchoa mitchilli	Bay Anchovy	157	2659	692	427	5	394
Clupeidae	Brevoortia patronus	Gulf Menhaden	75	40	3	19		13
	Dorosoma cepedianum	Gizzard Shad		8	1	33		4
	Dorosoma petenense	Threadfin Shad	1	1	1	30	2	-

Table 28. Otter trawl catch data for each sample site since 2014.

Family	Scientific Name	Common Name			Site			Total
-			B01	B10	B22	B31	B42	Catch
Cyprinidae	Macrhybopsis hyostoma	Shoal Chub				1		1
Cyprinidae	Cyprinidae	Cyprinidae					4	4
Catostomidae	Ictiobus bubalus	Smallmouth Buffalo					1	1
Ariidae	Ariopsis felis	Hardhead Catfish	173	103	18			294
	Bagre marinus	Gafftopsail Catfish	160	112	16	9		297
Ictaluridae	Ameirus melas	Black Bullhead					1	1
	Ictalurus furcatus	Blue Catfish	1	2	645	2858	193	3699
	Ictalurus punctatus	Channel Catfish			20	49	6	75
	Pylodictis	Flathead					1	1
	olivaris	Catfish					1	-
Ophidiidae	Ophidion josephi	Crested Cusk Eel	1					1
Mugilidae	Mugil cephalus	Striped Mullet		9	3	5		17
Triglidae	Prionotus tribulus	Bighead Searobin	2					2
Centrarchidae	Lepomis gulosus	Warmouth				1		1
Carangidae	Caranx hippos	Crevalle Jack	1			1		2
	Chloroscombrus	Atlantic		1	1		1	3
	chrysurus Selene vomer	Bumper Lookdown		1				1
Lutjanidae	Lutjanus griseus	Mangrove Snapper		1	6			7
Gerreidae	Eucinostomus argenteus	Spotfin Mojarra	2	1		2		5
	Eucinostomus melanopterus	Flagfin Mojarra	3	1	117	2		123
	Gerres cinereus	Yellowfin Mojarra		1	6	1		8
Sparidae	Archosargus probatocephalus	Sheepshead	7	8	1			16
	Lagodon rhomboides	Pinfish	2					2
Polynemidae	Polydactylus octonemus	Atlantic Threadfin	1					1
Sciaenidae	Aplodinotus grunniens	Freshwater Drum				2		2
	Bairdiella chrysoura	Silver Perch	149	32	1			182
	Cynoscion arenarius	Sand Seatrout	204	356	39	119		718
	Cynoscion nebulosus	Spotted Seatrout	2	7				9
	Larimus fasciatus	Banded Drum	7					7

Family	Scientific Name	Common Name			Site			Total
			B01	B10	B22	B31	B42	Catch
	Leiostomus xanthurus	Spot	23	29	16	94		162
	Menticirrhus americanus	Southern Kingfish		1				1
	Micropogonias undulatus	Atlantic Croaker	6281	5409	4815	454	16	16975
	Pogonias cromis	Black Drum		20	4			24
	Sciaenops ocellatus	Red Drum				2		2
	Stellifer lanceolatus	Star Drum	5274	1222	34	1		6531
	Sciaenidae spp.	Sciaenid	1					1
Gobiesocidae	Gobiesox strumosus	Skilletfish	1					1
Gobiidae	Ctenogobius boleosoma	Darter Goby	2	2				4
	Gobioides broussonnetii	Violet Goby		3	1	1		5
	Gobionellus oceanicus	Highfin Goby	1					1
Ephippidae	Gobiosoma bosc Chaetodipterus	Naked Goby Atlantic	5	1	1	1		1 7
I II III	faber Trichiurus	Spadefish	-					
Trichiuridae	lepturus	Ribbonfish	6	6				12
Paralichthyidae	Citharichthys spilopterus	Bay Whiff	11	8		1		20
	Paralichthys lethostigma	Southern Flounder	11	2				13
	Paralichthyidae spp.	Paralichthyidae		1				1
Achiridae	Achirus lineatus	Lined Sole			3	1	1	5
	Gymnachirus texae	Fringed Sole				3		3
	Trinectes maculatus	Hogchoker	1	1	5	10	17	34
Cynoglossidae	Symphurus plagiusa	Blackcheek Tonguefish	8					8
Tetraodontidae	Sphoeroides nephelus	Southern Puffer		1				1
	Sphoeroides parvus	Least Puffer	1	1				2
Unconfirmed	Unconfirmed	Unconfirmed	2	1			_	3
Grand Total			14523	10969	6679	5232	506	37909

Family	Scientific Name	Common Name	Site		-			Total
			G1	G1D1	G1U1	G2	G3	
		Broad-striped						
Engraulidae	Anchoa hepsetus	Anchovy			2			2
Engraulidae	Anchoa mitchilli	Bay Anchovy	173	10	164	3	3	353
Clupeidae	Harengule jaguana	Scaled Sardine	1					1
Ariidae	Ariopsis felis	Hardhead Catfish	4		2	8		14
Ariidae	Bagre marinus	Gafftopsail Catfish	11	1	11			23
Triglidae	Prionotus tribulus	Bighead Searobin			1			1
Carangidae	Caranx latus	Horse-eye Jack	1					1
Ū	Chloroscombrus							
Carangidae	chrysurus	Atlantic Bumper	2	3	2	2		9
Carangidae	Selene setapinnis	Atlantic Moonfish	43	1	27			71
Carangidae	Seriola rivoliana	Almaco Jack			1			1
Sciaenidae	Cynoscion arenarius	Sand Seatrout	62	2	39	2		105
Sciaenidae	Larimus fasciatus	Banded Drum			1	1		2
	Leiostomus							
Sciaenidae	xanthurus	Spot	1		1			2
~~~~~	Menticirrhus	~						
Sciaenidae	americanus	Southern Kingfish			1			1
~~~~~	Micropogonias	~ • • • • • • • • • • • • • • • • • • •						
Sciaenidae	undulatus	Atlantic Croaker	223	5	141	25		394
Sciaenidae	Pogonias cromis	Black Drum			1			1
Sciaenidae	Stellifer lanceolatus	Star Drum	185	4	337	75	1	602
Sphyraenidae	Sphyraena barracuda	Great Barracuda	1	1				2
Trichiuridae	Trichiurus lepturus	Ribbonfish	-	1	1	2	2	6
Stromateidae	Peprilus triacanthus	Atlantic Butterfish			12			12
Tetraodontidae	Sphoeroides parvus	Least Puffer	2					2
	Taphromysis		_					_
Mysidae	louisianae	Mysid Shrimp	4		7			11
111)510000	Farfantepenaeus	ingona bining	•		•			
Penaeidae	aztecus	Brown Shrimp	1		1			2
Penaeidae	Litopenaeus setiferus	White Shrimp	3	1		2		6
1 0/10/0000	Xiphopenaeus	, inte similip	U	-		-		Ŭ
Penaeidae	kroyeri	Seabob	1					1
Epialtidae	Libinia sp.	Spider Crab	1					1
Portunidae	Callinectes sapidus	Blue Crab	2		11	1		14
i minut	Sanneeres suprans	Atlantic Brief	-			-		
Loliginidae	Lolliguncula brevis	Squid	51	2	77	20	4	154
Unconfirmed	Unconfirmed	Unconfirmed		-	1			1
Grand Total	2	2	772	31	841	141	10	1795

Table 29. Otter trawl catch data for each sample site in the GOM.

= absent).		T	1					
Family	Scientific Name	Common Name	Johnson 1977	Emmitte 1983	EIH 2012	EIH 2014- 2015	EIH 2016- 2017	EIH 2018- 2019
	Lolliguncula	Atlantic Brief						
Loliginidae	brevis	Squid	1	0	1	1	1	0
Squillidae	Squilla empusa	Mantis Shrimp	1	1	1	0	0	0
	Taphromysis							
Mysidae	louisianae	Mysid Shrimp	1	0	0	0	0	1
	Farfantepenaeus							
Penaeidae	aztecus	Brown Shrimp	1	1	1	1	1	1
	Farfantepenaeus							
	duorarum	Pink Shrimp	0	0	0	1	1	0
	Litopenaeus							
	setiferus	White Shrimp	1	1	1	1	1	1
	Rimapenaeus	Roughback						
	similis	Shrimp	1	0	0	1	0	0
	Xiphopenaeus							
	kroyeri	Seabob	1	0	0	0	0	0
	Acetes	Sergestid						
Sergestidae	americanus	Shrimp	1	0	0	1	0	0
	Macrobrachium	Bigclaw River						
Palaemonidae	carcinus	Shrimp	0	0	0	1	0	0
	Macrobrachium	Ohio River						
	ohione	Shrimp	1	0	1	1	1	1
	Macrobrachium							
	rosenbergii	River Prawn	0	0	0	0	1	0
	Palaemonetes	Daggerblade		_				_
	pugio	Grass Shrimp	0	0	1	1	1	0
	Palaemonetes	Marsh Grass		_	-			_
	vulgaris	Shrimp	0	0	0	1	1	0
	Macrobrachium	Macrobrachium			-	_		_
	spp.	spp.	0	1	0	0	1	0
	Palaemonetes	Palaemonetes						
	spp.	spp.	0	0	0	1	0	0
		Bigclaw						
	Alpheus	Snapping	0	0		0	0	0
Alpheidae	heterochaelis	Shrimp	0	0	1	0	0	0
TT 1 1	Tozeuma		0	0	0	1	0	0
Hippolytidae	carolinense	Arrow Shrimp	0	0	0	1	0	0
Discust	Clibanarius	Thinstripe Usersit Cred		0	0	0	0	1
Diogenidae	vittatus	Hermit Crab	0	0	0	0	0	1
Estudid		Longnose Spider		0	1	0	1	
Epialtidae	Libinia dubia	Crab	0	0	1	0	1	0
	Libinia	Common Spider		0	0	0	1	
	emarginata	Crab	0	0	0	0	1	0
	Libinia spp.	Spider Crab	0	0	0	0	1	1

Table 30. Historical nekton presence in Brazos River by study since 1977 (1 = present, 0 = absent).

						ı.	.4	
			uo	Emmitte 1983	EIH 2012	EIH 2014- 2015	EIH 2016- 2017	EIH 2018- 2019
			Johnson 1977	ami 83	Н2	H 2 15	H 2 17	H 2 19
Family	Scientific Name	Common Name	Jol 19	En 19	EI	EI 20	EI 20	EI 20
T uning	Callinectes							
Portunidae	sapidus	Blue Crab	1	1	1	1	1	1
	Callinectes	Lesser Blue						
	similis	Crab	0	0	1	1	0	0
Menippidae	Menippe adina	Gulf Stone Crab	0	0	1	0	0	1
A A	Rithropanopeus	Estuarine Mud						
Panopeidae	harrisii	Crab	0	0	0	1	0	0
•	Speocarcinus	Gulf Squareback						
Xanthoidea	lobatus	Crab	0	0	1	0	0	0
		Skimmer						
Libellulidae	Libellulidae spp.	Dragonfly	0	0	0	0	1	1
	Dasyatis	Southern						
Dasyatidae	americana	Stingray	0	0	0	0	1	0
•	Dasyatis sabina	Atlantic Stingray	0	0	1	0	0	0
	Atractosteus							
Lepisosteidae	spatula	Alligator Gar	0	0	1	0	0	1
Albulidae	Albula vulpes	Bonefish	0	0	0	1	0	0
		Broad-striped						
Engraulidae	Anchoa hepsetus	Anchovy	0	0	1	0	0	0
~	Anchoa mitchilli	Bay Anchovy	1	1	1	1	1	1
	Brevoortia							
Clupeidae	patronus	Gulf Menhaden	1	1	1	1	1	1
	Dorosoma							
	cepedianum	Gizzard Shad	1	1	1	1	1	1
	Dorosoma							
	petenense	Threadfin Shad	0	1	1	1	1	1
	Harengule							
	jaguana	Scaled Sardine	1	1	1	0	0	0
	Opisthonema	Atlantic Thread						
	oglinum	Herring	0	0	1	0	0	0
	Alosine spp.	Alosine spp.	0	0	1	0	1	0
	Cyprinella							
Cyprinidae	lutrensis	Red Shiner	0	0	0	0	0	1
	Cyprinella							
	venusta	Blacktail Shiner	0	0	0	0	0	1
	Lythrurus fumeus	Ribbon Shiner	0	0	0	0	1	0
	Macrhybopsis							
	aestivalis	Speckled Chub	1	0	0	0	0	0
	Macrhybopsis							
	hyostoma	Shoal Chub	0	0	0	0	1	1
	Notropis							
	buchanani	Ghost Shiner	0	0	0	0	0	1
	Pimephales	Bullhead						
	vigilax	Minnow	0	0	0	1	1	1
	Cyprinidae	Cyprinidae	0	0	0	0	1	0
		Lake						
Catostomidae	Erimyzon sucetta	Chubsucker	0	0	0	1	0	0

			1					
Family	Scientific Name	Common Name	Johnson 1977	Emmitte 1983	EIH 2012	EIH 2014- 2015	EIH 2016- 2017	EIH 2018- 2019
		Smallmouth						
	Ictiobus bubalus	Buffalo	0	0	0	1	0	0
		Hardhead						
Ariidae	Ariopsis felis	Catfish	1	1	1	1	1	1
		Gafftopsail						
	Bagre marinus	Catfish	1	1	1	1	1	1
Ictaluridae	Ameirus melas	Black Bullhead	0	0	0	1	0	0
	Ictalurus furcatus	Blue Catfish	1	1	1	1	1	1
	Ictalurus							
	punctatus	Channel Catfish	1	1	1	1	1	1
	Pylodictis							
	olivaris	Flathead Catfish	0	0	0	0	1	0
		Crested Cusk						
Ophidiidae	Ophidion josephi	Eel	0	0	0	0	0	1
	Porichthys	Atlantic						
Batrachoididae	plectrodon	Midshipman	0	1	0	0	0	0
Antennariidae	Histrio histrio	Sargassum Fish	0	0	1	0	0	0
Mugilidae	Mugil cephalus	Striped Mullet	1	1	1	1	1	1
	Mugil curema	White Mullet	0	0	1	0	0	0
Atherinopsidae	Menidia beryllina	Inland Silverside	0	0	0	0	1	0
	Menidia spp.	Menidia spp.	0	1	0	0	0	0
	Cyprinodon	Sheepshead						
Cyprinodontidae	variegatus	Minnow	0	0	1	0	0	0
• •		Western						
Poeciliidae	Gambusia affinis	Mosquitofish	0	0	0	1	1	0
	Hippocampus							
Syngnathidae	erectus	Lined Seahorse	0	0	1	0	0	0
	Syngnathus	Sargassum						
	pelagicus	Pipefish	0	0	1	0	0	0
	Prionotus	Bighead						
Triglidae	tribulus	Searobin	1	0	0	1	0	0
	Centropomus							
Centropomidae	undecimalis	Common Snook	0	1	0	0	0	0
	Lepomis							
Centrarchidae	cyanellus	Green Sunfish	0	0	0	1	0	0
	Lepomis gulosus	Warmouth	0	0	0	1	0	0
	Lepomis							
	macrochirus	Bluegill	0	0	0	1	0	0
	Lepomis spp.	Lepomis spp.	0	0	0	0	1	0
Carangidae	Caranx hippos	Crevalle Jack	1	1	1	0	1	1
	Chloroscombrus							
	chrysurus	Atlantic Bumper	1	1	0	1	1	0
		Atlantic						
	Selene setapinnis	Moonfish	0	0	1	0	0	0
	Selene vomer	Lookdown	1	1	0	1	0	0

			1	1	1	1	1	1
Family	Scientific Name	Common Name	Johnson 1977	Emmitte 1983	EIH 2012	EIH 2014- 2015	EIH 2016- 2017	EIH 2018- 2019
	Trachinotus	Florida						
	carolinus	Pompano	1	0	0	0	0	0
		Mangrove						
Lutjanidae	Lutjanus griseus	Snapper	0	1	1	1	0	0
	Eucinostomus							
Gerreidae	argenteus	Spotfin Mojarra	0	0	1	0	1	1
	Eucinostomus							
	gula	Silver Jenny	0	0	0	0	0	0
	Eucinostomus							
	melanopterus	Flagfin Mojarra	0	0	1	1	0	0
		Yellowfin						
	Gerres cinereus	Mojarra	0	0	0	1	0	0
	Orthopristis							
Haemulidae	chrysoptera	Pigfish	0	1	0	0	0	0
	Archosargus							
Sparidae	probatocephalus	Sheepshead	0	1	0	1	1	0
	Lagodon							
	rhomboides	Pinfish	1	1	1	0	0	1
	Polydactylus	Atlantic						
Polynemidae	octonemus	Threadfin	1	1	1	0	1	0
	Aplodinotus	Freshwater						
Sciaenidae	grunniens	Drum	1	0	0	0	1	1
	Bairdiella							
	chrysoura	Silver Perch	1	1	1	1	1	1
	Cynoscion							
	arenarius	Sand Seatrout	1	1	1	1	1	1
	Cynoscion							
	nebulosus	Spotted Seatrout	0	0	1	1	0	1
	Larimus fasciatus	Banded Drum	1	1	0	1	0	1
	Leiostomus							
	xanthurus	Spot	1	1	1	1	1	1
	Menticirrhus	Southern						
	americanus	Kingfish	1	0	1	0	0	1
	Micropogonias							
	undulatus	Atlantic Croaker	1	1	1	1	1	1
	Pogonias cromis	Black Drum	0	1	1	1	1	0
	Sciaenops							
	ocellatus	Red Drum	0	1	0	0	1	1
	Stellifer							
	lanceolatus	Star Drum	1	1	1	1	1	1
	Sciaenidae spp.	Sciaenid	0	0	1	0	1	0
	Astroscopus y-	Southern						
Uranoscopidae	graecum	Stargazer	1	0	0	0	0	0
~	Gobiesox	01.111 . C . f						
Gobiesocidae	strumosus	Skilletfish	0	0	0	1	0	0

				1				1
Family	Scientific Name	Common Name	Johnson 1977	Emmitte 1983	EIH 2012	EIH 2014- 2015	EIH 2016- 2017	EIH 2018- 2019
		Large-scaled						
	Eleotris	Spinycheek						
Eleotridae	amblyopsis	Sleeper	0	0	1	0	0	0
	Ctenogobius	Freshwater						
Gobiidae	shufeldti	Goby	0	0	1	1	0	0
	Ctenogobius							
	boleosoma	Darter Goby	1	0	1	1	1	1
	Gobiosoma bosc	Naked Goby	0	0	1	1	1	0
	Gobioides							
	broussonnetii	Violet Goby	0	0	0	0	1	1
	Gobionellus							
	oceanicus	Highfin Goby	1	0	1	1	0	0
	Gobiosoma bosc	Naked Goby	0	0	1	0	1	0
	Gobiidae spp.	Gobiidae spp.	0	0	1	1	0	0
	Chaetodipterus	Atlantic						
Ephippidae	faber	Spadefish	1	0	1	1	1	1
	Trichiurus	•						
Trichiuridae	lepturus	Ribbonfish	1	0	1	1	1	1
	Scomberomorus	Atlantic Spanish						
Scombridae	maculatus	Mackerel	0	1	0	0	0	0
Stromateidae	Peprilus paru	Harvestfish	1	0	0	0	0	0
	Peprilus	Atlantic			-	-		-
	triacanthus	Butterfish	0	1	0	0	0	0
	Citharichthys				-	-		-
Paralichthyidae	spilopterus	Bay Whiff	1	0	1	1	1	1
	Paralichthys	Southern						
	lethostigma	Flounder	1	1	1	1	1	1
	Paralichthyidae							
	spp.	Paralichthyidae	0	0	1	0	1	0
Achiridae	Achirus lineatus	Lined Sole	0	0	1	1	0	0
	Gymnachirus							
	texae	Fringed Sole	0	0	1	0	0	1
	Trinectes	0	-	-		-	-	
	maculatus	Hogchoker	0	0	0	1	1	1
	Symphurus	Blackcheek	÷			_	_	_
Cynoglossidae	plagiusa	Tonguefish	0	0	1	1	0	1
	Sphoeroides		-	-		-	-	-
Tetraodontidae	nephelus	Southern Puffer	0	0	0	0	1	0
	Sphoeroides	~ • • • • • • • • • • • • • • • • • • •	~	Ť	, v	, v	-	~
	parvus	Least Puffer	1	0	0	0	0	1
					U U	V		1
Unconfirmed	Unconfirmed	Unconfirmed	0	0	0	0	1	1

Table 31. Cumulative nekton taxa richness for each method during each sampling period and sample site. Identifiable species would be considered all taxa that were identified to the species level.

	Method	Species Richness	Identifiable Species
2014-2015	BT	37	34
	OT	49	49
2016-2017	BT	28	23
	OT	50	45
2018-2019	BT	20	19
	OT	43	41
B01	BT	25	22
	OT	50	48
B10	BT	25	23
	OT	41	39
B22	BT	25	25
	OT	30	29
B31	BT	25	23
	OT	33	32
B42	BT	25	24
	OT	18	17

Table 32. Formulas and definitions for diversity indices calculated from nekton data.

Variable	Definition/Formula
Shannon-Wiener Diversity Index (H [^])	$H' = -\sum p_i * \ln(p_i)$
Shannon Evenness (J')	$J' = \frac{H'}{\ln(S)}$
Margalef Richness Index (MR)	$MR = \frac{(S-1)}{\ln(N)}$
p_i	The proportion of the entire
	community/sample made up of species <i>i</i>
S^*	Species richness: the number of unique
	species present in a community/sample.
Ν	Total number of individuals in the sample.
*Species that could not be identified down	to the lowest taxonomic level (e.g.
Macrobrachium spp., etc.) were still treate	d as individual species when calculating
diversity indices.	-

	Season	Flow Tier							Shannon- Wiener	Shannon Evenness
				Total	Species	Haul Time		Margalef	Diversity	(J^{\prime})
Date			Site	Catch (N)	Richness	(Minutes)	CPUE	Richness	Index (H')	
11/12/2014	Winter	Avg-Sub	B01	57	8	1.616667	35.25773	1.731366	1.329767	0.639483
			B10	165	5	1.683333	98.0198	0.7834	0.541566	0.336494
			B22	65	4	1.65	39.39394	0.718668	0.295163	0.212915
			B31	2	1	1.65	1.212121	0	0	0
			B42	7	3	1.65	4.242424	1.027797	0.9557	0.869916
12/10/2014	Winter	Avg-Sub	B01	6	3	2.45	2.44898	1.116221	1.011404	0.92062
			B10	9	3	1.733333	5.192308	0.910239	0.683739	0.622366
			B22	19	4	2.15	8.837209	1.01887	1.164365	0.839911
			B31	13	6	1.516667	8.571429	1.949356	1.697734	0.947523
			B42	341	6	2.95	115.5932	0.857356	0.307954	0.171872
1/7/2015	Winter	Avg-Base	B01	1368	10	2.1	651.4286	1.246347	0.236133	0.102551
			B10	13	3	2.35	5.531915	0.779742	0.687092	0.625418
			B22	148	8	1.916667	77.21739	1.400781	1.018552	0.48982
			B31	26	5	1.916667	13.56522	1.227711	1.244001	0.772941
			B42	6	4	1.95	3.076923	1.674332	1.329661	0.959148
2/5/2015	Winter	Avg-Base	B01	580	8	2	290	1.100105	0.547854	0.263462
			B10	192	5	1.966667	97.62712	0.760819	0.62395	0.387682
			B22	17	6	2.233333	7.61194	1.764781	1.542676	0.860984
			B31	18	6	2.133333	8.4375	1.729881	1.351039	0.754029
			B42	6	4	2.633333	2.278481	1.674332	1.329661	0.959148
2/19/2015	Winter	Avg-Sub	B01	210	8	2.3	91.30435	1.309119	0.614251	0.295392
			B10	38	4	1.916667	19.82609	0.824723	0.573146	0.413437
			B22	90	9	1.75	51.42857	1.777853	1.484688	0.67571
			B31	37	9	1.616667	22.8866	2.215503	1.54609	0.703656
			B42	79	5	1.65	47.87879	0.915447	0.320244	0.198979
4/2/2015	Spring	Avg-3ps	B01	21	3	1.866667	11.25	0.656917	0.835937	0.760903
			B10	25	3	2.016667	12.39669	0.621335	0.529644	0.482102
			B22	40	5	1.733333	23.07692	1.08434	0.687207	0.426986
			B31	36	5	1.9	18.94737	1.116221	1.155998	0.718262

Table 33. Summary table of community metrics for beam trawl collections.

	Season	Flow Tier							Shannon-	Shannon
									Wiener	Evenness
D			C ''	Total	Species	Haul Time	CDUE	Margalef	Diversity	(J^{\prime})
Date			Site	Catch (N)	Richness	(Minutes)	CPUE	Richness	Index (H')	0.011100
			B42	12	6	1.85	6.486486	2.012148	1.632631	0.911189
4/28/2015	Spring	Avg-3ps	B01	92	7	1.833333	50.18182	1.326909	0.785452	0.403642
			B10	218	7	2.25	96.88889	1.114311	1.224572	0.629306
			B22	20	8	2.4	8.333333	2.336657	1.567181	0.753655
			B31	32	4	1.966667	16.27119	0.865617	1.180305	0.85141
			B42	34	3	2.483333	13.69128	0.567157	0.354599	0.32277
5/7/2015	Spring	Wet-2ps	B01	81	2	1.483333	54.60674	0.22756	0.294175	0.424405
			B10	95	6	1.766667	53.77358	1.097966	0.791814	0.44192
			B22	19	4	1.9	10	1.01887	0.826405	0.596125
			B31	20	4	1.75	11.42857	1.001425	0.799903	0.577008
			B42	28	2	1.866667	15	0.300102	0.154076	0.222285
12/1/2016	Winter	Wet-Sub	B01	27	3	1.466667	18.40909	0.606826	0.419556	0.381896
			B10	26	1	1.633333	15.91837	0	0	0
			B22	44	3	1.166667	37.71429	0.528515	0.638494	0.581182
			B31	3	2	1.283333	2.337662	0.910239	0.636514	0.918296
			B42	6	4	1.016667	5.901639	1.674332	1.329661	0.959148
12/20/2016	Winter	Wet-Sub	B01	43	2	0.983333	43.72881	0.265873	0.671081	0.968165
			B10	10	3	0.95	10.52632	0.868589	0.639032	0.581672
			B22	0	0	0.916667	0	0	0	0
			B31	1	1	0.966667	1.034483	0	0	0
			B42	18	3	1.183333	15.21127	0.691953	0.98099	0.892935
1/31/2017	Winter	Wet-Base	B01	80	3	1.666667	48	0.45641	0.490293	0.446284
			B10	47	8	1.616667	29.07216	1.818112	1.542444	0.741759
			B22	2	2	1.2	1.666667	1.442695	0.693147	1
			B31	11	6	1.316667	8.35443	2.085162	1.594167	0.889721
			B42	109	5	1.583333	68.84211	0.852633	0.570584	0.354524
3/15/2017	Spring	Wet-Base	B01	5	2	0.8	6.25	0.621335	0.500402	0.721928
			B10	29	2	0.8	36.25	0.296974	0.149995	0.216397
			B22	74	5	0.9	82.22222	0.929354	0.285218	0.177216
		1	B31	13	3	1.133333	11.47059	0.779742	0.790268	0.719333
			B42	23	4	1.15	20	0.956787	1.075027	0.775468

	Season	Flow Tier							Shannon- Wiener	Shannon Evenness
				Total	Species	Haul Time		Margalef	Diversity	(J^{\prime})
Date			Site	Catch (N)	Richness	(Minutes)	CPUE	Richness	Index (\dot{H})	
5/1/2017	Spring	Wet-Base	B01	1	1	1.35	0.740741	0	0	0
			B10	4	4	1.166667	3.428571	2.164043	1.386294	1
			B22	6	3	1.233333	4.864865	1.116221	0.867563	0.78969
			B31	9	4	1.183333	7.605634	1.365359	1.14906	0.828871
			B42	12	3	1.183333	10.14085	0.804859	0.721464	0.656705
5/24/2017	Spring	Wet-Sub	B01	1	1	1.383333	0.722892	0	0	0
			B10	6	2	1.183333	5.070423	0.558111	0.636514	0.918296
			B22	6	4	1.066667	5.625	1.674332	1.329661	0.959148
			B31	3	3	1.466667	2.045455	1.820478	1.098612	1
			B42	5	5	1.566667	3.191489	2.48534	1.609438	1
6/27/2017	Spring	Wet-Base	B01	1	1	1.483333	0.674157	0	0	0
			B10	1	1	1.3	0.769231	0	0	0
			B22	6	1	1.183333	5.070423	0	0	0
			B31	2	1	1.233333	1.621622	0	0	0
			B42	36	4	1.433333	25.11628	0.837166	0.678434	0.489387
7/31/2017	Summer	Avg-Base	B01	0	0	1.116667	0	0	0	0
			B10	0	0	0.95	0	0	0	0
			B22	0	0	1.1	0	0	0	0
			B31	0	0	1.133333	0	0	0	0
			B42	2	1	1.15	1.73913	0	0	0
9/20/2017	Summer	Avg-3ps	B01	0	0	1.15	0	0	0	0
			B10	3	2	1.433333	2.093023	0.910239	0.636514	0.918296
			B22	2	1	1.116667	1.791045	0	0	0
			B31	15	3	1.45	10.34483	0.738539	0.627705	0.571362
			B42	27	4	1.65	16.36364	0.910239	0.950516	0.685653
10/18/2017	Summer	Avg-3ps	B01	2	1	1.583333	1.263158	0	0	0
			B10	0	0	1.1	0	0	0	0
			B22	3	2	1.166667	2.571429	0.910239	0.636514	0.918296
			B31	9	1	1.533333	5.869565	0	0	0
			B42	3	3	1.566667	1.914894	1.820478	1.098612	1

	Season	Flow Tier							Shannon- Wiener	Shannon Evenness
				Total	Species	Haul Time		Margalef	Diversity	(J^{\prime})
Date			Site	Catch (N)	Richness	(Minutes)	CPUE	Richness	Index (\dot{H})	
9/27/2018	Summer	Avg-Sub	B01	1	1	1.466667	0.681818	0	0	0
			B10	0	0	1.283333	0	0	0	0
			B22	29	5	1.65	17.57576	1.187897	1.171033	0.727604
			B31	0	0	1.55	0	0	0	0
3/12/2019	Spring	Wet-Base	B01	1	1	0.966667	1.034483	0	0	0
			B10	312	2	1.1	283.6364	0.174125	0.054227	0.078232
			B22	10	4	1	10	1.302883	1.0889	0.785475
			B31	124	3	1.116667	111.0448	0.414914	0.326566	0.297254
7/11/2019	Summer	Wet-2ps	B01	0	0	1.116667	0	0	0	0
			B10	1	1	1.366667	0.731707	0	0	0
			B22	19	7	1.766667	10.75472	2.03774	1.689245	0.8681
			B31	73	6	1.45	50.34483	1.165376	0.713838	0.398401
7/31/2019	Summer	Wet-Base	B01	0	0	1.033333	0	0	0	0
			B10	0	0	1.433333	0	0	0	0
			B22	0	0	1.7	0	0	0	0
			B31	0	0	3.166667	0	0	0	0
9/5/2019	Summer	Wet-Sub	B01	0	0	1.133333	0	0	0	0
			B10	1	1	1.6	0.625	0	0	0
			B22	0	0	1.483333	0	0	0	0
			B31	0	0	1.483333	0	0	0	0
10/17/2019	Summer	Wet-Sub	B01	0	0	1.583333	0	0	0	0
			B10	0	0	1.45	0	0	0	0
			B22	0	0	1.5	0	0	0	0
			B31	3	1	1.233333	2.432432	0	0	0
12/5/2019	Winter	Avg-Sub	B01	5	1	1	5	0	0	0
			B10	6	2	0.833333	7.2	0.558111	0.450561	0.650022
			B22	7	2	0.916667	7.636364	0.513898	0.410116	0.591673
			B31	10	4	0.85	11.76471	1.302883	1.0889	0.785475

		Flow Tier			Species				Shannon- Wiener	Shannon Evenness
				Total	Richness	Haul Time		Margalef	Diversity	(J')
Date	Season		Site	Catch (N)	(<i>S</i>)	(Minutes)	CPUE	Richness	Index (\dot{H})	
11/12/2014	Winter	Avg-Sub	B01	151	12	15	10.06667	2.192423	1.650998	0.66441
			B10	189	13	15	12.6	2.289313	1.477811	0.576156
			B22	600	10	15	40	1.406925	0.339091	0.147265
			B31	326	5	9.5	34.31579	0.691217	0.116237	0.072222
			B42	12	3	15	0.8	0.804859	0.918428	0.835989
12/10/2014	Winter	Avg-Sub	B01	82	8	15	5.466667	1.588483	0.818924	0.393819
			B10	29	11	15	1.933333	2.969742	2.097655	0.87479
			B22	43	12	15	2.866667	2.924598	1.799437	0.724147
			B31	400	9	14.5	27.58621	1.335233	0.659077	0.299959
			B42	82	5	15	5.466667	0.907705	0.728304	0.452521
1/7/2015	Winter	Avg-Base	B01	253	11	15	16.86667	1.807211	0.501339	0.209075
			B10	10	4	15	0.666667	1.302883	1.168282	0.842738
			B22	2785	10	15	185.6667	1.134644	0.260873	0.113296
			B31	15	3	15	1	0.738539	0.485094	0.441552
			B42	5	5	15	0.333333	2.48534	1.609438	1
2/5/2015	Winter	Avg-Base	B01	28	6	15	1.866667	1.500508	1.346511	0.751502
			B10	14	7	15	0.933333	2.273539	1.72982	0.888952
			B22	190	3	15	12.66667	0.381168	0.307192	0.279618
			B31	17	3	15	1.133333	0.705912	0.677909	0.617059
			B42	14	3	15	0.933333	0.757846	1.078992	0.982141
2/19/2015	Winter	Avg-Sub	B01	1186	11	15	79.06667	1.41276	0.211075	0.088025
			B10	136	10	15	9.066667	1.832003	1.220907	0.530233
			B22	655	7	15	43.66667	0.925264	0.154736	0.079518
			B31	328	5	14.5	22.62069	0.690487	0.577778	0.358994
			B42	6	4	5	1.2	1.674332	1.242453	0.896241
4/2/2015	Spring	Avg-3ps	B01	210	5	15	14	0.748068	0.926536	0.575689

Table 34. Summary table of community metrics for otter trawl collections.

		Flow Tier			Succion				Shannon-	Shannon
				Total	Species Richness	Haul Time		Margalef	Wiener Diversity	Evenness (J^{\prime})
Date	Season		Site	Catch (N)	(S)	(Minutes)	CPUE	Richness	Index (H')	(\mathbf{J})
			B10	37	4	15	2.466667	0.830814	0.524448	0.378309
			B22	31	4	15	2.066667	0.87362	0.424254	0.306035
			B31	20	4	15	1.333333	1.001425	0.96726	0.697731
			B42	16	3	15	1.066667	0.721348	0.601924	0.547895
4/29/2015	Spring	Avg-3ps	B01	3	3	15	0.2	1.820478	1.098612	1
			B10	9	4	15	0.6	1.365359	1.14906	0.828871
			B22	13	4	15	0.866667	1.169614	1.204793	0.869075
			B31	2	1	14.83333	0.134831	0	0	0
			B42	8	2	15	0.533333	0.480898	0.37677	0.543564
5/7/2015	Spring	Wet-2ps	B01	24	6	15	1.6	1.57329	1.567971	0.875101
			B10	40	7	15	2.666667	1.62651	1.048301	0.53872
			B22	23	5	15	1.533333	1.275716	1.068006	0.66359
			B31	12	4	15	0.8	1.207289	1.075139	0.775549
			B42	42	3	15	2.8	0.535093	0.224451	0.204304
8/12/2015	Summer	Wet-2ps	B01	192	10	15	12.8	1.711842	1.49876	0.650903
			B10	1735	11	15	115.6667	1.340705	1.010103	0.421246
			B22	107	8	15	7.133333	1.498022	1.526104	0.733901
			B31	344	4	15	22.93333	0.513642	0.74222	0.535398
			B42	31	2	15	2.066667	0.291207	0.239217	0.345117
12/1/2016	Winter	Wet-Sub	B01	233	15	15.06667	15.39823	2.568318	1.140835	0.421276
			B10	210	9	15.08333	13.92265	1.496136	1.507554	0.686118
			B22	391	5	15.11667	25.86549	0.670162	0.464003	0.288301
			B31	240	8	15.16667	15.82418	1.277223	1.230751	0.591866
			B42	99	4	14.3	6.923077	0.652867	0.551566	0.397871
12/20/2016	Winter	Wet-Sub	B01	2737	13	15.41667	177.5351	1.516182	0.361046	0.140761
			B10	318	12	15.35	20.71661	1.909042	0.726496	0.292364
			B22	1093	6	15.31667	71.36017	0.714624	0.05422	0.030261

		Flow Tier			Species				Shannon- Wiener	Shannon Evenness
				Total	Richness	Haul Time		Margalef	Diversity	(J^{\prime})
Date	Season		Site	Catch (N)	(S)	(Minutes)	CPUE	Richness	Index (\dot{H})	
			B31	65	5	15.01667	4.328524	0.958224	1.063085	0.660532
			B42	19	3	15.33333	1.23913	0.679247	1.045978	0.95209
1/31/2017	Winter	Wet-Base	B01	241	9	15.65	15.39936	1.458577	0.814442	0.370668
			B10	37	6	15.35	2.410423	1.384689	1.528123	0.852862
			B22	11	2	15.23333	0.722101	0.417032	0.304636	0.439497
			B31	2	1	15.23333	0.131291	0	0	0
			B42	5	5	15.25	0.327869	2.48534	1.609438	1
3/15/2017	Spring	Wet-Base	B01	383	9	15.13333	25.30837	1.344982	1.106024	0.503373
			B10	42	6	15.1	2.781457	1.337732	1.474406	0.822882
			B22	4	2	15.06667	0.265487	0.721348	0.562335	0.811278
			B31	23	2	15.08333	1.524862	0.318929	0.295439	0.426229
			B42	5	1	14.78333	0.338219	0	0	0
5/1/2017	Spring	Wet-Base	B01	68	9	15	4.533333	1.895956	1.532275	0.697369
			B10	16	6	14	1.142857	1.803369	1.700165	0.94888
			B22	76	3	15	5.066667	0.461816	0.753993	0.686314
			B31	76	4	15.16667	5.010989	0.692723	0.444736	0.320809
			B42	5	2	14.66667	0.340909	0.621335	0.500402	0.721928
5/24/2017	Spring	Wet-Sub	B01	986	14	15.15	65.08251	1.885792	0.526943	0.199671
			B10	661	13	15.21667	43.43921	1.84793	1.084001	0.422621
			B22	7	2	15.25	0.459016	0.513898	0.682908	0.985228
			B31	216	6	15.35	14.07166	0.930184	0.53687	0.299633
			B42	75	3	14.33333	5.232558	0.463232	0.408785	0.372092
6/27/2017	Spring	Wet-Base	B01	408	10	15.13333	26.96035	1.497188	1.053923	0.457713
			B10	163	10	15.05	10.83056	1.766871	0.929092	0.4035
			B22	336	6	15.01667	22.37514	0.859533	0.424213	0.236758
			B31	58	3	15	3.866667	0.492557	0.816738	0.743427
			B42	12	2	15	0.8	0.40243	0.636514	0.918296

		Flow Tier							Shannon-	Shannon
					Species				Wiener	Evenness
Data	C		<u>a.</u>	Total	Richness	Haul Time	CDUE	Margalef	Diversity	(J^{\prime})
Date	Season		Site	Catch (N)	(S)	(Minutes)	CPUE	Richness	Index (H')	
7/31/2017	Summer	Avg-Base	B01	1011	12	15.15	66.73267	1.589895	0.75056	0.302048
			B10	18	6	15.1	1.192053	1.729881	1.406678	0.785082
			B22	91	7	15.11667	6.019846	1.330123	1.508544	0.775238
			B31	327	12	14.26667	22.92056	1.89984	1.675201	0.67415
			B42	52	5	15.13333	3.436123	1.012339	1.09566	0.680772
9/20/2017	Summer	Avg-3ps	B01	175	7	15.1	11.5894	1.161713	0.980881	0.504073
			B10	61	6	15.16667	4.021978	1.216286	1.309902	0.73107
			B22	22	2	15.08333	1.458564	0.323515	0.304636	0.439497
			B31	163	3	12.3	13.25203	0.392638	0.15243	0.138748
			B42	8	1	15.13333	0.528634	0	0	0
10/18/2017	Summer	Avg-3ps	B01	74	10	15.16667	4.879121	2.091046	0.914849	0.397314
			B10	269	11	15.06667	17.85398	1.787402	1.230709	0.513246
			B22	6	2	15.15	0.39604	0.558111	0.693147	1
			B31	256	6	14.96667	17.10468	0.901684	0.372682	0.207998
			B42	10	3	15.05	0.664452	0.868589	0.801819	0.729847
9/19/2018	Summer	Avg-Base	G1D1	31	11	15	43.26667	2.912067	2.056999	0.857835
			G1	649	15	15.01667	2.064373	2.162018	1.753066	0.647353
			G1U1	402	15	15.1	26.62252	2.334714	1.822928	0.673152
			G2	8	4	15.2	0.526316	1.442695	1.320888	0.95282
			G3	3	1	15	0.2	0	0	0
9/27/2018	Summer	Avg-Sub	B01	259	11	15.13333	17.11454	1.799588	1.190087	0.496305
			B10	338	12	15.03333	22.48337	1.889046	1.529286	0.61543
			B22	0	0	15.01667	0	0	0	0
			B31	468	11	14.91667	31.3743	1.626421	1.536541	0.640787
3/12/2019	Spring	Wet-Base	B01	1378	10	15.01667	91.76471	1.245091	0.162699	0.070659
. , -			B10	2827	10	15	188.4667	1.132507	0.203937	0.088569
			B22	4	3	15.06667	0.265487	1.442695	1.039721	0.946395

		Flow Tier			Species				Shannon- Wiener	Shannon Evenness
				Total	Richness	Haul Time		Margalef	Diversity	(J^{\prime})
Date	Season		Site	Catch (N)	(<i>S</i>)	(Minutes)	CPUE	Richness	Index (H')	
			B31	10	4	13.05	0.766284	1.302883	1.0889	0.785475
7/11/2019	Summer	Wet-2ps	B01	909	13	15.15	60	1.761508	0.655132	0.255417
			B10	254	6	15.11667	16.80265	0.902962	1.461519	0.815689
			B22	47	2	15.26667	3.078603	0.25973	0.420859	0.607172
			B31	38	2	14.98333	2.536151	0.274908	0.642422	0.926819
7/31/2019	Summer	Wet-Base	B01	2597	13	15.05	172.5581	1.526307	0.553881	0.215942
			B10	622	11	15.25	40.78689	1.554499	1.351838	0.56376
			B22	19	7	13.9	1.366906	2.03774	1.708656	0.878075
			B31	93	3	15.23333	6.105033	0.441248	0.953849	0.86823
9/5/2019	Summer	Wet-Sub	B01	498	15	15.08333	33.01657	2.254211	2.003461	0.739817
			B10	564	9	15.1	37.35099	1.262815	1.109534	0.50497
			B22	3	2	14.11333	0.212565	0.910239	0.636514	0.918296
			B31	1571	12	15.15	103.6964	1.494673	0.588232	0.236722
10/17/2019	Summer	Wet-Sub	B01	143	13	15.58333	9.176471	2.417968	1.861053	0.725571
			B10	1837	11	15.16667	121.1209	1.330515	0.85539	0.356725
			B22	81	2	10.15	7.980296	0.22756	0.158411	0.228538
			B31	0	0	0	0	0	0	0
12/4/2019	Winter	Avg-Sub	G1D1	0	0	15.55	7.909968	0	0	0
		_	G1	123	12	15.16667	0	2.285864	1.627035	0.654767
			G1U1	439	12	15.3	28.69281	1.807873	1.047327	0.421475
			G2	133	10	15.33333	8.673913	1.840359	1.384535	0.601296
			G3	7	3	15.58333	0.449198	1.027797	0.9557	0.869916
12/5/2019	Winter	Avg-Sub	B01	294	8	15.06667	19.51327	1.231618	1.634105	0.785838
••		Ŭ	B10	533	11	15.05	35.41528	1.592732	1.00916	0.420852
			B22	41	7	14.18333	2.890717	1.615695	1.501064	0.771394
			B31	162	12	10.01667	16.17304	2.162121	1.686087	0.678531

APPENDIX H:

STATISTICAL OUTPUT FOR HYDROLOGY RESULTS

Table 35. Descriptive Statistics for Extreme Flow Event Analysis (Figure 6).

Left Panel	
Mean Daily Average Discharge (cfs)	8394.02
Median Daily Average Discharge (cfs)	3190
Extreme Flow (cfs)	33869.90
Right Panel	
Mean Days with Extreme Flow	21.69388
Median Days with Extreme Flow	13
Outlier Days (red line)	80.84652

Year	Annual Average	Days exceeding	Days exceeding	Days with
	Discharge (cfs)	mean daily	median daily	extreme flow ()
		average discharge (8,394.02 cfs)	average discharge (3,190 cfs)	
1967		6	37	0
1968	14300	195	274	36
1969	8051	112	177	19
1970	6942	111	217	5
1971	2756	37	95	0
1972	3125	27	113	0
1973	12620	182	309	26
1974	8994	116	208	24
1975	9865	155	242	14
1976	7784	108	212	5
1977	8166	107	181	16
1978	1780	11	59	0
1979	11680	150	261	30
1980		38	102	5
1981		0	0	
1982		0	0	
1983		0	0	
1984		37	70	6
1985	7374	106	235	6
1986	8914	123	279	13
1987	10350	155	258	17
1988	1500	3	41	0
1989	5488	69	118	3
1990	7777	82	139	26
1991	10720	141	254	22
1992	26990	239	291	132
1993	9747	151	223	18
1994	7139	80	175	13
1995	9787	158	245	2
1996	2363	21	76	0
1997	14700	178	262	44
1998	12710	172	224	36
1999	2926	24	116	0
2000	2478	31	70	4
2001	10280	163	260	20
2002	6981	86	204	10
2003	5810	59	176	8
2004	14790	168	337	52
2005	6522	93	159	6

Table 36. Summary table for Extreme Flow Event Analysis (Figure 6).

Year	Annual Average	Days exceeding	Days exceeding	Days with
	Discharge (cfs)	mean daily	median daily	extreme flow ()
		average discharge	average discharge	
		(8,394.02 cfs)	(3,190 cfs)	
2006	2138	16	48	0
2007	20800	246	313	91
2008	3196	36	133	0
2009	4998	87	121	6
2010	8443	110	224	13
2011	637.4	0	5	0
2012	4578	60	102	11
2013	2457	24	67	3
2014	1990	12	40	2
2015	18900	204	292	90
2016	21080	231	320	100
2017	8929	75	247	14
2018	9690	92	135	45
2019	15790	167	240	75
*Blank cells indica	ite no data was avai	lable for the listed	year.	

Table 37. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) of each month from 1967-2019 (Top panel of Figure 7).

Group	N	Median	Mean Rank	Z-Value	Null hypothesis	H ₀ :	All mediar	ns are equal
January	1488	5115	10329.0	10.45	Alternative	H ₁ : At least one media		ne median is
February	1356	5485	10469.3	10.98	hypothesis	dif	ferent	
March	1488	6385	10758.3	13.79	Method	DF	H-Value	P-Value
oril	1476	5515	10297.7	10.17	Not adjusted for	11	1776.83	0.000
1ay	1550	6620	10802.8	14.45	ties			
ine	1500	4605	9929.6	7.38	Adjusted for ties	11	1776.83	0.000
ıly	1550	1810	7408.7	-12.50				
ıgust	1550	1260	5995.5	-23.73	Comparisons:		66	
ptember	1499	1860	6958.9	-15.78	Ties:	1552	5	
tober	1519	1840	7283.4	-13.35	Family Alpha:	().367	
ovember	1470	2715	8689.6	-2.26	Bonferroni Individua	al Alpi	ha: 0.00	6
ecember	1519	3260	9165.3	1.43	Bonferroni Z-value (2	2-side	ed): 2.773	3
verall	17965		8983.0					

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Jan	1.00000	*	*	*	*	*	*	*	*	*	*	*
Feb	0.47130	1.00000	*	*	*	*	*	*	*	*	*	*
Mar	0.02398	0.13777	1.00000	*	*	*	*	*	*	*	*	*
Apr	0.86955	0.37921	0.01564	1.00000	*	*	*	*	*	*	*	*
May	0.01183	0.08372	0.81292	0.00741	1.00000	*	*	*	*	*	*	*
Jun	0.03529	0.00548	0.00001	0.05284	0.00000	1.00000	*	*	*	*	*	*
Jul	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*	*
Aug	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*
Sep	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.01666	0.00000	1.00000	*	*	*
Oct	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.50325	0.00000	0.08573	1.00000	*	*
Nov	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	*
Dec	0.00000	0.00000	0.00000	0.00000	0.00000	0.00005	0.00000	0.00000	0.00000	0.00000	0.01218	1

Table 38. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs)of each month from 1967-2019 (Bottom panel of Figure 7).GroupNMedianMean RankZ-ValueNull hypothesisH₀: All medians are equal

Group	N	Median	Mean Rank	Z-Value	Null hypothesis	H_0 :	All mediar	ns are equa
January	279	2740	1896.2	4.64	Alternative	H_1 :	At least or	ne median is
February	254	3205	1759.0	2.01	hypothesis	dif	ferent	
March	279	4700	1861.0	3.99	Method	DF	H-Value	P-Value
pril	270	5250	1824.9	3.27	Not adjusted for	11	164.70	0.000
1ay	279	2590	1858.9	3.95	ties			
une	270	2900	1698.6	0.99	Adjusted for ties	11	164.70	0.000
Jly	279	2000	1516.4	-2.35				
ıgust	279	894	1213.6	-7.92	Comparisons:		66	
ptember	270	1510	1371.6	-4.92	Ties:	17	31	
tober	279	1420	1411.4	-4.28	Family Alpha:		0.367	
ovember	270	2430	1658.6	0.26	Bonferroni Indivic	dual A	lpha: 0.0	006
ecember	279	2050	1667.4	0.43	Bonferroni Z-valu	e (2-s	ided): 2.7	773
verall	3287		1644.0					

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Jan	1.00000	*	*	*	*	*	*	*	*	*	*	*
Feb	0.09555	1.00000	*	*	*	*	*	*	*	*	*	*
Mar	0.66155	0.21518	1.00000	*	*	*	*	*	*	*	*	*
Apr	0.37904	0.42682	0.65596	1.00000	*	*	*	*	*	*	*	*
May	0.64269	0.22478	0.97913	0.67482	1.00000	*	*	*	*	*	*	*
Jun	0.01475	0.46680	0.04504	0.12207	0.04790	1.00000	*	*	*	*	*	*
Jul	0.00000	0.00321	0.00002	0.00014	0.00002	0.02452	1.00000	*	*	*	*	*
Aug	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00016	1.00000	*	*	*	*
Sep	0.00000	0.00000	0.00000	0.00000	0.00000	0.00006	0.07394	0.05106	1.00000	*	*	*
Oct	0.00000	0.00002	0.00000	0.00000	0.00000	0.00039	0.19099	0.01384	0.62408	1.00000	*	*
Nov	0.00337	0.22638	0.01250	0.04178	0.01344	0.62444	0.07920	0.00000	0.00044	0.00227	1.00000	*
Dec	0.00440	0.26556	0.01595	0.05182	0.01713	0.69956	0.06032	0.00000	0.00026	0.00144	0.91427	1

	5	<u>11-2019 (Figi</u>	/		Null by mathemic	11		
Group	N	Median	Mean Rank	Z-Value	Null hypothesis	-		s are equal
2011	365	442	531.3	-23.76	Alternative	-		e median is
2012	366	1025	1260.5	-8.20	hypothesis	dif	ferent	
2013	365	725	1014.3	-13.44	Method	DF	H-Value	P-Value
2014	365	1080	1142.0	-10.72	Not adjusted for	8	1548.36	0.000
2015	365	11700	2384.2	15.80	ties Adjusted for ties	8	1548.36	0.000
2016	366	11650	2541.9	19.20	Aujusted for ties	0	1040.00	0.000
2017	365	4470	2061.5	8.91	Comparisons:		36	
2018	365	1960	1713.9	1.49	Ties:	17	31	
2019	365	6720	2145.0	10.70	Family Alpha:		0.2	
Overall	3287		1644.0		Bonferroni Individ	dual A	lpha: 0.0	006
					Bonferroni Z-valu	e (2-s	ided): 2.7	73

Table 39. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) of each year from 2011-2019 (Figure 8).

	2011	2012	2013	2014	2015	2016	2017	2018	2019
2011	1.00000	*	*	*	*	*	*	*	*
2012	0.00000	1.00000	*	*	*	*	*	*	*
2013	0.00000	0.00045	1.00000	*	*	*	*	*	*
2014	0.00000	0.09131	0.06911	1	*	*	*	*	*
2015	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*
2016	0.00000	0.00000	0.00000	0.00000	0.02468	1.00000	*	*	*
2017	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	*	*
2018	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	*
2019	0.00000	0.00000	0.00000	0.00000	0.00066	0.00000	0.23446	0.00000	1

Table 40. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) of each season from 1967-2019 (Top panel of Figure 9).

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	-		ns are equal
Spring	6014	5580	10450.0	26.90	Alternative hypothesis	-	: At least or ferent	ne median is
Summer	6118	1690	6909.4	-38.51	Method		H-Value	P-Value
Winter	5833	4190	9645.4	11.87	Not adjusted for	2	1554.47	0.000
Overall	17965		8983.0		ties Adjusted for ties	2	1554.47	0.000
					Comparisons:		3	
					Ties:	15	525	
					Family Alpha:		0.017	
					Bonferroni Individ	dual A	lpha: 0.0	006
					Bonferroni Z-valu	e (2-s	ided): 2.7	773

Table of Z-values (adjusted for ties)

	Spring	Summer	Winter
Spring	0.0000	*	*
Summer	37.5973	0.0000	*
Winter	8.4422	28.8288	0.0000

	Spring	Summer	Winter
Spring	1.0000	*	*
Summer	0.0000	1.0000	*
Winter	0.0000	0.0000	1.0000

Table 41. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) of each season from 2011-2019 (Bottom panel of Figure 9).

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	-		is are equal
Spring	1098	4205	1811.7	7.17	Alternative hypothesis	-	: At least or ferent	ie median is
Summer	1107	1490	1378.3	-11.44	Method		H-Value	P-Value
Winter	1082	2590	1745.7	4.30	Not adjusted for	2	133.46	0.000
Overall	3287		1644.0		ties Adjusted for ties	2	133.46	0.000
					Comparisons:		3	
					Ties:	17	31	
					Family Alpha:		0.017	
					Bonferroni Individ	dual A	Alpha: 0.0	006
					Bonferroni Z-valu	e (2-s	ided): 2.7	73

	Spring	Summer	Winter
Spring	0.0000	*	*
Summer	10.7212	0.00000	*
Winter	1.6227	9.05556	0.00000

	Spring	Summer	Winter
Spring	1.0000	*	*
Summer	0.0000	1.0000	*
Winter	0.10465	0.0000	1.0000

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	H ₀ :	: All mediar	ns are equal
2011	123	333	146.6	-14.99	Alternative	H1:	: At least or	ne median is
2012	123	920	408.4	-5.36	hypothesis	dif	ferent	
2013	123	398	301.6	-9.29	Method	DF	H-Value	P-Value
2014	123	912	392.6	-5.94	Not adjusted for ties	8	649.65	0.000
2015	123	5470	784.6	8.48	Adjusted for ties	8	649.65	0.000
2016	123	10700	916.4	13.33	Adjusted for ties	0	049.05	0.000
2017	123	4070	797.1	8.94	Comparisons:		36	
2018	123	1230	545.8	-0.30	Ties:	339		
2019	123	2910	692.8	5.11	Family Alpha:	().2	
Overall	1107		554.0		Bonferroni Individu	al Alp	ha: 0.006	6
					Bonferroni Z-value	(2-side	ed): 2.773	3

Table 42. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) during the summer season of each year from 2011-2019 (Figure 10).

	2011	2012	2013	2014	2015	2016	2017	2018	2019
2011	1.00000	*	*	*	*	*	*	*	*
2012	0.00000	1.00000	*	*	*	*	*	*	*
2013	0.00014	0.00879	1.00000	*	*	*	*	*	*
2014	0.00000	0.69796	0.02561	1.00000	*	*	*	*	*
2015	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*
2016	0.00000	0.00000	0.00000	0.00000	0.00122	1.00000	*	*	*
2017	0.00000	0.00000	0.00000	0.00000	0.75898	0.00342	1.00000	*	*
2018	0.00000	0.00075	0.00000	0.00017	0.00000	0.00000	0.00000	1.00000	*
2019	0.00000	0.00000	0.00000	0.00000	0.02443	0.00000	0.01055	0.00031	1.00000

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	H ₀ :	: All mediar	ns are equa
2011	120	889	246.4	-10.97	Alternative	H_1	: At least or	ne median i
2012	121	711	328.8	-7.94	hypothesis	dif	ferent	
2013	120	2345	503.4	-1.42	Method	DF	H-Value	P-Value
2014	120	1100	336.0	-7.64	Not adjusted for ties	8	396.13	0.000
2015	120	14800	810.9	10.02	Adjusted for ties	8	396.13	0.000
2016	121	6010	737.0	7.30	Adjusted for ties	0	550.15	0.000
2017	120	3000	600.0	2.17	Comparisons:		36	
2018	120	12350	707.6	6.17	Ties:	353		
2019	120	2735	603.7	2.31	Family Alpha:	().2	
Overall	1082		541.5		Bonferroni Individu	al Alp	ha: 0.000	6
					Bonferroni Z-value	(2-side	ed): 2.773	3

Table 43. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) during the winter season of each year from 2011-2019 (Figure 11).

	2011	2012	2013	2014	2015	2016	2017	2018	2019
2011	1.00000	*	*	*	*	*	*	*	*
2012	0.04050	1.00000	*	*	*	*	*	*	*
2013	0.00000	0.00001	1.00000	*	*	*	*	*	*
2014	0.02632	0.85922	0.00003	1.00000	*	*	*	*	*
2015	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*
2016	0.00000	0.00000	0.00000	0.00000	0.06619	1.00000	*	*	*
2017	0.00000	0.00000	0.01666	0.00000	0.00000	0.00067	1.00000	*	*
2018	0.00000	0.00000	0.00000	0.00000	0.01042	0.46547	0.00764	1.00000	*
2019	0.00000	0.00000	0.01290	0.00000	0.00000	0.00093	0.92651	0.01002	1.00000

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	H ₀ :	All mediar	ns are equal
2011	122	305.5	125.1	-15.68	Alternative	H ₁ :	At least or	ne median is
2012	122	2735.0	501.2	-1.78	hypothesis	dif	ferent	
2013	122	559.0	224.5	-12.01	Method	DF	H-Value	P-Value
2014	122	1440.0	392.3	-5.81	Not adjusted for ties	8	771.41	0.000
2015	122	23000.0	819.7	9.98	Adjusted for ties	8	771.42	0.000
2016	122	41050.0	927.4	13.96		0	// 1.42	0.000
2017	122	6050.0	643.9	3.49	Comparisons:		36	
2018	122	2045.0	461.1	-3.27	Ties:	268		
2019	122	26450.0	850.4	11.12	Family Alpha:	().2	
Overall	1098		549.5		Bonferroni Individu	al Alp	ha: 0.006	5
					Bonferroni Z-value	(2-side	ed): 2.773	3

Table 44. Results of Kruskal-Wallis test and Dunn's multiple comparisons test between median daily average discharge (cfs) during the spring season of each year from 2011-2019 (Figure 12).

	2011	2012	2013	2014	2015	2016	2017	2018	2019
2011	1.00000	*	*	*	*	*	*	*	*
2012	0.00000	1.00000	*	*	*	*	*	*	*
2013	0.01438	0.00000	1.00000	*	*	*	*	*	*
2014	0.00000	0.00727	0.00004	1.00000	*	*	*	*	*
2015	0.00000	0.00000	0.00000	0.00000	1.00000	*	*	*	*
2016	0.00000	0.00000	0.00000	0.00000	0.00803	1.00000	*	*	*
2017	0.00000	0.00044	0.00000	0.00000	0.00001	0.00000	1.00000	*	*
2018	0.00000	0.32236	0.00000	0.09013	0.00000	0.00000	0.00001	1.00000	*
2019	0.00000	0.00000	0.00000	0.00000	0.45065	0.05792	0.00000	0.00000	1.00000

APPENDIX I:

STATISTICAL OUTPUT FOR WATER QUALITY RESULTS

Table 45. Results of linear regression analysis between field discharge and continuousdischarge (left) and daily average discharge (right) for Figure 13.

Con	ntinuous	Model	Sum	nary		Daily Average Model Summary								
Field Discha	arge (cfs) =	455.6				Field Discharge (cfs) = 469.1								
+ 0.9207 Cc	ontinuous	Dischar	ge			+ 0.9180 D	aily	Averag	ge Disch	arge				
		SE	Т-	P-					SE	Т-	P-			
Term	Coef	Coef	Value	Value	VIF	Term		Coef	Coef	Value	Value	VIF		
Constant	455.6	452	1.01	0.324		Constant		469.1	453	1.04	0.311			
Continuous	s 0.9207	0.0765	12.04	0.000	1.00	Daily	C	.9180	0.0765	11.99	0.000	1.00		
Discharge						Average								
_						Discharge								
S	Dam	Deal	adi)		الم م بر	S		Dca	D cal	'adi)	D ca(r	arad)		
5	R-sq	R-sq(a	auj)	R-sq(p	rea)	3		R-sq	R-sq(aujj	R-sq(p	neu)		
1222.13	86.30%	85.7			.29%	1226.12		.21%	-	61%		.17%		
		-						-	-					
1222.13		-				1226.12		-	-					
1222.13	86.30%	85.7		84 F-	.29% P-	1226.12		.21%	-		84	.17% P-		
1222.13 ANOVA	86.30%	85.7 dj SS	71% Adj MS	84 F- Value	.29% P- Value	1226.12 ANOVA	86 DF	.21%	85.	61% Adj MS	84 F- Value	.17% P- Value		
1222.13 ANOVA Source	86.30% DF Ac 1 21644	85.7 dj SS 7148 216	71% Adj MS 447148	84 F- Value 144.92	P- Value 0.000	1226.12 ANOVA Source	86 DF 1	.21% Ac 216222	85. aj SS	61% Adj MS	84 F- Value 143.82	.17% P- Value 0.000		
1222.13 ANOVA Source Regression	86.30% DF Ac 1 21644	85.7 dj SS 7148 216	71% Adj MS 447148	84 F- Value 144.92	P- Value 0.000	1226.12 ANOVA Source Regression	86 DF 1	.21% Ac 216222	85. dj SS 2265 210	61% Adj MS	84 F- Value 143.82	.17% P- Value 0.000		
1222.13 ANOVA Source Regression Continuous	86.30% DF Ac 1 21644	85.7 dj SS 7148 216 7148 216	71% Adj MS 447148	84 F- Value 144.92	P- Value 0.000	1226.12 ANOVA Source Regression Daily	86 DF 1	.21% Ac 216222	85. dj SS 2265 210	61% Adj MS	84 F- Value 143.82	.17% P- Value 0.000		
1222.13 ANOVA Source Regression Continuous Discharge	86.30% DF Ac 1 21644 5 1 21644	35.7 35 S 7148 216 7148 216 2659 1	Adj MS 447148 447148	84 F- Value 144.92	P- Value 0.000	1226.12 ANOVA Source Regression Daily Average	86 DF 1	.21% Ac 216222	85. dj SS 2265 216 2265 216	61% Adj MS	84 F- Value 143.82	.17% P- Value 0.000		

						Μ	iddl	e Moo	lel Su	mmary			Upper Model Summary						
Lower = 7.	761 -	+ 0.2198	3 Julian I	Day -		Middle = 6	Middle = 6.741 + 0.2291 Julian Day -					Upper = 7.339 + 0.2225							
0.000560 J	ulian	Day^2				0.000579	Juliar	ר Day^נ	2				0.000570 J	uliar	n Day	^2			
Source	DF		SS	F	Ρ	Source		DF	SS	F	:	Ρ	Source	I	DF	SS		F	Р
Linear	1		2037.7	50.09	0.000	Linear		1 2	557.8	56.53	0.00	0	Linear		1	1394.2	32.5	56	0.000
Quadratic	1	2	8036.9	3326.35	0.000	Quadratic		1 33	150.3	3369.23	0.00	0	Quadratic		1 2	23095.8	3093.7	77	0.000
	S	R-	·sq	R-so	(adj)		S	I	۲-sq	R	•sq(adj	j)		S		R-sq	ļ	R-sc	q(adj)
2.903	323	80.4	3%	80).39%	3.13	674	79.	51%		79.479	6	2.732	226	8	3.42%		83	3.37%
ANOVA						ANOVA							ANOVA						
Source	DF	SS	MS	F	Р	Source	DF	S	S I	MS	F	Ρ	Source	DF		SS	MS	F	Р
Regression	2	30074.7	15037.3	1784.05	0.000	Regression	2	35708.	1 1785	4.0 1814.0	50 0.00	0	Regression	2	2449	0.0 122	45.0 1640).27	0.000
Error	868	7316.2	8.4			Error	935	9199.	6	9.8			Error	652	486	7.3	7.5		
Total	870	37390.8				Total	937	44907.	5				Total	654	2935	7.4			

Table 46. Results of polynomial regression analysis between daily average temperature ($^{\circ}C$) *and Julian day for each site (Figure 14).*

Table 47. Results of combined polynomial regression analysis between daily average temperature ($^{\circ}C$) and Julian day (Figure 15).

Model Sun	nmary	7												
Daily Averag	e Tem	peratur	e(°C) = 7	'.272 +	0.2	2240 Ju	ulian D	Day ·	- 0	.000	570	Julia	n Da	y^2
Source	DF	SS	F	Ρ										
Linear	1 !	5948.4	138.47	0.000										
Quadratic	184	4236.1 9	9631.87	0.000										
S	R-sq	R-sq(a	idj)											
2.95729 8	0.73%	80.7	2%											
ANOVA														
Source	DF	SS	MS	5	F	Р								
Regressior	ר ר 2	90184	45092.2	2 5156.	02	0.000								
Error	2461	21523	8.7	7										
Total	2463	111707												

 Table 48. Results of linear regression analysis between log transformed daily average salinity (psu) and daily average discharge (cfs) (Top panel of Figure 16).

L	owei	r Mo	odel	Sum	nary		Mi	ddl	e Mod	lel Sı	ımr	nary		Uj	oper	Mod	el Sum	mary	
Log Salinit	y (pp	ot) = 2	2.953	- 0.66	649 Log	[Daily	Log [Salinit	y (pp	ot)] = 2	.538 -	0.7	271 Log	5	Log [Salinit	y (pp	ot)] = 1.	078 - 0.	3764 Log	g
Avg Discha	arge	(cfs)]					[Daily Avg	Discł	narge (cfs)]				[Daily Avg	Disch	arge (o	ːfs)]		
	S		R-s	sq	R-s	q(adj)		S		R-sq		R-so	q(adj)		S		R-sq	R-s	q(adj)
0.189	692	8	30.98	8%	8	0.96%	0.341	319	61	.92%		6	1.88%	0.352	311	28.	68%	2	8.57%
					Т- Р						т	-						Т- Р	
Term	С	oef S	E Coe	ef Valu	ue Valu	e VIF	Term	C	oef SE	Coef	Valu	e Value	e VIF	Term	Co	oef SE C	oef Va	lue Valu	e VIF
Constant	2.53	379	0.071	5 35.4	48 0.00	0	Constant	2.53	379 0.0	0715	35.4	8 0.000	0	Constant	1.07	83 0.0	908 11	.87 0.00	0
Log [Daily Avg Discharge (cfs)]	0.72	271	0.018	5 -39.2	24 0.00	0 1.00	Log [Daily Avg Discharge (cfs)]	0.72	271 0.0)185 -	-39.24	4 0.000	0 1.00	Log [Daily Avg Discharge (cfs)]	0.37	64 0.0	232 -16	.24 0.00	0 1.00
ANOVA							ANOVA							ANOVA					
Source	DE	٥di	SS /	Ai MS	F-Value	P- Value	Source	DE	Adi SS	۸di I	MS	F-Value	P- Value	Source	DF	Adi SS	Adi M	F- S Value	P- Value
Jource		Auj	55 7		i value	Vulue			Auj 55	Auji	10	i value	vulue			Auj 55	Aaj m	5 Vulue	Value
Regression	1	132.9	57 1	32.957	3694.99	0.000	Regression	1	179.42	179.4	17 <i>°</i>	1540.08	0.000	Regression	1	32.74	32.742	3 263.79	0.000
Log Daily Avg Discharge (cfs)	1	132.9	157 1	32.957	3694.99	0.000	Log Daily Avg Discharge (cfs)]	1	179.42	179.4	17 ⁻	1540.08	0.000	Log Daily Avg Discharge (cfs)]	1	32.74	32.742	3 263.79	0.000
Error	868	31.2	33	0.036			Error	947	110.32	0.1	16			Error	656	81.42	0.124	1	
Lack-of-Fit	649	24.4	44	0.038	1.21	0.043	Lack-of-Fit	689	87.23	0.1	27	1.41	0.001	Lack-of-Fit	518	71.39	0.137	8 1.90	0.000
Pure Error	219	6.7	'90	0.031			Pure Error	258	23.10	0.0	90			Pure Error	138	10.03	0.072	7	
Total	869	164.1	90				Total	948	289.74					Total	657	114.17			

Table 49. Results of nonlinear regression analysis between daily average salinity (psu) and daily average discharge (cfs)(Bottom panel of Figure 16).

Le Daily Averag Average Dise	e Salir	2 11 7	2759.14 *	' 'Daily		M Daily Averag Average Dise 0.194236	e Sali	2 11 7	2904.51 *	J			y Averag	e Salir	nity (ppt) =	Summa 3950.97 * .09618 + 0.7	'Daily	3
Lack of Fit						Lask of Et						Lac	k of Fit					
Source	DF	SS	MS	F	<u>P</u>	Lack of Fit						Sou	irce	DF	SS	MS	F	P
Error	867	6339.09	7.31152			Source	DF	SS	MS	F		P Err	or	655	603.797	0.921828		
Lack of Fit	648	5081.35	7.84159	1.37	0.003	Error	946	2673.65	2.82627			La	ck of Fit	517	500.075	0.967263	1.29	0.037
Pure	219	1257.74	5.74309			Lack of Fit	688	1894.70	2.75392	0.91	0.819) Pu	ire Error	138	103.722	0.751610		
Error						Pure Error	258	778.96	3.01921									
Iterations					9	Iterations					2	l Ite	rations					6
Final SSE				63	39.09	Final SSE				26	573.65	5 Fin	al SSE				60	3.797
DFE					867	DFE					946	5 DF	E					655
MSE				7.3	31152	MSE				2.	82627	MS	E				0.92	21828
S				2.7	70398	S				1.	68115	5 S					0.96	50119

 Table 50. Results of linear regression analysis between daily average depth (m) and daily average discharge (cfs) (Top panel of Figure 17).

Lower Model Summary	Middle Model Summary	Upper Model Summary
Daily Avg Depth (m) = 0.64503 + 0.00001	Daily Avg Depth (m) = 0.6135 + 0.000043	Daily Avg Depth (m) = 0.00979 + 0.000070
Daily Avg Discharge	Daily Avg Discharge	Daily Avg Discharge
T- P- Term Coef SE Coef Value Value V	T- P- Term Coef SE Coef Value Value VIF	T- P- Term Coef SE Coef Value VIF
Constant 0.64503 0.00826 78.06 0.000	Constant 0.6135 0.0140 43.79 0.000	Constant 0.0098 0.0318 0.31 0.759
Daily Avg 0.000013 0.000000 38.82 0.000 1.0 Discharge	Daily 0.000043 0.000001 71.05 0.000 1.00 Average Discharge Image Image	Daily Avg 0.000070 0.000001 59.25 0.000 1.00 Discharge
S R-sq R-sq(adj) R-sq(prec	S R-sq R-sq(adj) R-sq(pred)	S R-sq R-sq(adj) R-sq(pred)
0.177210 66.83% 66.79% 66.58	0.336945 83.62% 83.60% 83.55%	0.494158 89.68% 89.65% 89.21%
ANOVA	ANOVA	ANOVA
I	P-	P-
Source DF Adj SS Adj MS F-Value Valu	Source DF Adj SS Adj MS F-Value Value	Source DF Adj SS Adj MS F-Value Value
Regression 1 47.331 47.3314 1507.21 0.00	Regression 1 573.08 573.076 5047.72 0.000	Regression 1 857.290 857.290 3510.72 0.000
Daily Avg 1 47.331 47.3314 1507.21 0.00 Discharge	Daily Avg 1 573.08 573.076 5047.72 0.000 Discharge	Daily Avg 1 857.290 857.290 3510.72 0.000 Discharge
Error 748 23.490 0.0314	Error 989 112.28 0.114	Error 404 98.654 0.244
Lack-of-Fit 571 18.451 0.0323 1.14 0.15	Lack-of-Fit 708 90.48 0.128 1.65 0.000	Lack-of-Fit 339 94.666 0.279 4.55 0.000
Pure Error 177 5.039 0.0285	Pure Error 281 21.80 0.078	Pure Error 65 3.988 0.061
Total 749 70.821	Total 990 685.36	Total 405 955.944

 Table 51. Results of nonlinear regression analysis between daily average depth (m) and daily average discharge (cfs) (Bottom panel of Figure 17).

Ι	20WE	er Mode	l Summar	сy		N	Aidd	lle Mod	el Summ	ary			Upp	er Mod	lel Sur	nma	ry	
Daily Aver	age [Depth (m	ı) = 4.60357	/ (1 +		Daily Av	erag	e Depth	(m) = 5.32	958/	(1 +	Daily Av	/erag	ge Depth	(m) = !	5.013	312 / ((1 +
5.92829 *	exp(-1.65945	e-05 * 'Dai	ly Avera	ge	6.73765	* ex	p(-4.111	67e-05 * '	Daily		26.3028	3 * ex	xp(-9.895	552e-0	5 * 'C	Daily	
Discharge))					Average	Disc	harge))				Average	e Dis	charge))				
Lack of Fi	t					Lack of	Fit					Lack of	Fit					
Source	DF	SS	MS	F	Ρ	Source	DF	SS	MS	F	Р	Source	DF	SS		MS	F	Р
Error	747	21.9501	0.0293844			Error	988	97.9778	0.099168			Error	403	31.3227	0.0777	7238		
Lack of	570	16.9115	0.0296693	1.04 0.3	376	Lack	707	76.1788	0.107749	1.39	0.001	Lack	338	27.3351	0.0808	3730	1.32 (0.088
Fit						of Fit						of Fit						
Pure	177	5.0386	0.0284668			Pure	281	21.7990	0.077577			Pure	65	3.9876	0.0613	3476		
Error						Error						Error						
Iterations					3	Iteration	IS				4	Iteration	าร					4
Final SSE				21.95	501	Final SSE	Ξ			97	.9778	Final SS	E				31.	3227
DFE				7	747	DFE					988	DFE						403
MSE				0.02938	344	MSE				0.099	91678	MSE					0.077	7238
S				0.1714	119	S				0.31	4909	S					0.27	8790

linear	Mode	l (Flo	w)		Simple Li	inear	Mod	lel (Tei	nperat	ture)	Multiple	Linear	Regre	ssion	Mode	el
= 7.841	- 0.000	014 Lo	wer		Lower = 13.	16 – 0	.2360	Lower T	emp		-	-	-			5
											Lower Tem	p - 0.000	115 Lov			
C • •	4 SE C	oof Vo			Torm	Caa	6 6E C				Torm	Coof	SE Coo	•	-	
COE	I SEC	Jei va	iue vait	le VIF	Term	Coe	I SE C	Dei Vali	le valu	ie vir	Term	Coel	SE COE	i value	e value	VIF
7.84	1 0.1	58 49	.75 0.00	00	Constant	13.156	5 0.3	351 37.4	43 0.00	00	Constant	14.871	0.409	9 36.35	5 0.000	
0.000014	4 0.0000	019 0	.75 0.45	55 1.00	Lower -	-0.2360	0.01	153 -15.4	43 0.00	00 1.00	Lower	-0.2815	0.0158	8 -17.85	5 0.000	1.19
					Temp						Temp					
											Lower -(0.000115	0.000016	5 -7.17	0.000	1.19
											Flow					
R-sq	R-sq	(adj)	R-sq	(pred)	S	R-so	a R∙	·sq(adj)	R-sq	(pred)	S	R-sq	R-sq(a	adj)	R-sq(p	ored)
0.09%	C	0.00%		0.00%	2.16506 3	36.52%	6	36.37%	3	35.87%	2.04417	43.55%	43.2	28%	42	.74%
					ANOVA						ANOVA					
		Adj	F-	P-			Adj			P-					F-	P-
DF	Adj SS	MS	Value	Value	Source	DF	SS	Adj MS	F-Value	Value	Source	DF	Adj SS /	Adj MS	Value	Value
1	4.57	4.575	0.56	0.455	Regression	1	1117	1116.67	238.22	0.000	Regression	2	1331.5	665.76	159.32	0.000
1	4.57	4.575	0.56	0.455	Lower Temp	1	1117	1116.67	238.22	0.000	Lower Temp	o 1	1331.5 1	331.52	318.65	0.000
597	4893.42	8.197			Error	414	1941	4.69			Lower Flow	1	214.8	214.84	51.41	0.000
449	3526.71	7.855	0.85	0.893	Total	415	3057				Error	413	1725.8	4.18		
148	1366.72	9.235									Total	415 3	3057.3			
598	4898.00															
	= 7.841 Coe 7.84 0.000014 R-sq 0.09% DF 1 1 1 597 449 148	 7.841 - 0.000 Coef SE Co 7.841 0.1 0.000014 0.0000 R-sq R-sq 0.09% C DF Adj SS 1 4.57 1 4.57 1 4.57 4893.42 3526.71 	= 7.841 - 0.000014 Lc Coef SE Coef Va 7.841 0.158 49 0.000014 0.000019 0 0.000014 0.000019 0 0.009% 0.00% DF Adj SS 1 4.57 1 4.57 597 4893.42 8.197 449 3526.71 148 1366.72	Coef SE Coef Value Value 7.841 0.158 49.75 0.00 0.000014 0.000017 0.75 0.45 R-sq R-sq(adj) 0.75 0.45 0.09% 0.000% $R-sq$ $R-sq$ 0.09% 0.00% $R-sq$ $R-sq$ Adj $R-sq$ Adj $R-sq$ 0.09% 0.00% $Value$ $R-sq$ 1 4.57 4.575 0.56 1 4.57 4.575 0.56 597 4893.42 8.197 0.85 449 3526.71 7.855 0.85 148 1366.72 9.235 0.50	F.841 - 0.000014 Lower Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 0.000014 0.00019 0.75 0.455 1.00 0.000014 0.00019 0.75 0.455 1.00 0.009% 0.00% 0.00% 0.00% Matrix Adj SS Adj SS F- MS P- Value 1 4.57 4.575 0.56 0.455 1 4.57 4.575 0.56 0.455 1 4.57 4.575 0.56 0.455 597 4893.42 8.197 0.855 0.893 449 3526.71 7.855 0.855 0.893 148 1366.72 9.235 0.455 0.455	A A T-P- Cower = 13. T-P- Cower = 13. 7.841 0.158 49.75 0.000 Constant 0.000014 0.00019 0.75 0.455 1.00 Constant 0.000014 0.00019 0.75 0.455 1.00 Lower Term 0.00000 0.0000 0.0000 0.0000 2.16506 3 Adj SS Adj F-P- P- DF Adj SS MS Value Value Source 1 4.57 4.575 0.56 0.455 Lower Temp 597 4893.42 8.197 Error Error 449 3526.71 7.855 0.85 0.893 Total	T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.000014 0.000019 0.75 0.455 1.00 Constant 13.156 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 R-sq R-sq(adj) R-sq(pred) S R-sc 0.09% 0.00% 0.00% 2.16506 36.52% MS Value Value Value Source DF 1 4.57 4.575 0.56 0.455 Lower Temp 1 597 4893.42 8.197 Error 414 449 3526.71 7.855 0.85 0.893 Total 415 148 1366.72	r - P- Lower = 13.16 - 0.2360 Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.3 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.01 R-sq R-sq(adj) R-sq(pred) S R-sq R-sq R-sq Adj S R-sq DF Adj SS MS Value Value Value Value Adj S S Adj S S S 1 4.57 4.575 0.56 0.455 Lower Temp 1 11177 1 4.57 4.575 0.56 0.455 Lower Temp 1 11177 597 4893.42 8.197 Error 414 1941 449 3526.71 7.855 0.85 0.893 Total 415 3057 148 1366.72 9.235 - - - - - - - - - - - - <td>T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 0.000014 0.000019 0.75 0.455 1.00 Coef SE coef Value VIF Term Coef SE Coef Value 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.4 R-sq R-sq(adj) R-sq(pred) S R-sq R-sq(adj) -15.4 0.09% 0.00% 0.00% 0.00% 2.16506 36.52% 36.37% Adj F- P- P- Adj Source DF Adj S Adj S 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 597 4893.42</td> <td>T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.00 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.00 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.00 0.009% 0.00% 0.00% 0.00% 2.16506 36.52% 36.37%</td> <td>T. P. Coef SE Coef Value Value VIF T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 R-sq R-sq(adj) R-sq(pred) S R-sq R-sq(adj) R-sq(pred) 2.16506 36.52% 36.37% 35.87% DF Adj SS MS Value Value Value Value Pe Source DF Adj SS Adj SS 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 597 4893.42 8.197 Error 414 1941 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69</td> <td>= 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Averation T. P. T. P. T. P. T. P. T. P. Description Term Coef SE Coef Value VIF Term Constant 13.156 0.351 37.43 0.000 Constant 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower Term Constant 13.16 0.000 1.00 Lower Term Constant 13.16 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower Term Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.153 -5.43 0.000 2.04417 0.00 2.04417 0.00 2.0</td> <td>F. P. Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (n Lower Temp - 0.000 Coef SE Coef Value VIF Term T. P. Daily Average DO (n Lower Temp - 0.000 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 Constant 14.871 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 Lower -0.2815 R-sq R-sq(adj) R-sq(pred) S R-sq (adj) R-sq(adj) R-sq(pred) S R-sq R-sq (adj) R-sq(pred) S R-sq 0.09% 0.00% 0.00% 0.00% 0.00% Resp(pred) S R-sq (adj) R-sq(pred) S R-sq 1 4.57 4.575 0.56 0.455 Regression 1 1117 1116.67 238.22 0.000 Regression 2 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 Regression 2</td> <td>= 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (mg/L) = 1 Lower Temp - 0.000115 Lower Temp - 0.000114 Lower Temp - 0.000115 Lower Temp - 0.2360 0.0153 - 15.43 0.000 Term Coef SE Coef Value Value VIF Term Coef SE Coef Value V</td> <td>- 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (mg/L) = 14.871 Lower Temp - 0.000115 Lower Flow T- P- Coef SE Coef Value Value VIF Term Coef SE Coef Value VIF Term Coef SE Coef Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 Constant 14.871 0.409 36.32 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2815 0.0158 -17.85 0.009% 0.00% 0.00% 0.000 2.16506 36.52% 36.37% 35.87% 2.04417 43.55% 43.28% Adj SS Adj F- P- P- 0.09% 0.00% 0.00% 2.16506 36.52% 36.37% 35.87% 2.04417 43.55% 43.28% 1 4.57 4.575 0.56 0.455 Icower Termp 1 1117 11</td> <td>Second Second Second</td>	T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 0.000014 0.000019 0.75 0.455 1.00 Coef SE coef Value VIF Term Coef SE Coef Value 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.4 R-sq R-sq(adj) R-sq(pred) S R-sq R-sq(adj) -15.4 0.09% 0.00% 0.00% 0.00% 2.16506 36.52% 36.37% Adj F- P- P- Adj Source DF Adj S Adj S 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 597 4893.42	T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.00 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.00 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.00 0.009% 0.00% 0.00% 0.00% 2.16506 36.52% 36.37%	T. P. Coef SE Coef Value Value VIF T. P. Coef SE Coef Value Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 R-sq R-sq(adj) R-sq(pred) S R-sq R-sq(adj) R-sq(pred) 2.16506 36.52% 36.37% 35.87% DF Adj SS MS Value Value Value Value Pe Source DF Adj SS Adj SS 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 597 4893.42 8.197 Error 414 1941 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69 4.69	= 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Averation T. P. T. P. T. P. T. P. T. P. Description Term Coef SE Coef Value VIF Term Constant 13.156 0.351 37.43 0.000 Constant 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower Term Constant 13.16 0.000 1.00 Lower Term Constant 13.16 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower Term Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2360 0.153 -5.43 0.000 2.04417 0.00 2.04417 0.00 2.0	F. P. Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (n Lower Temp - 0.000 Coef SE Coef Value VIF Term T. P. Daily Average DO (n Lower Temp - 0.000 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 Constant 14.871 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 Lower -0.2815 R-sq R-sq(adj) R-sq(pred) S R-sq (adj) R-sq(adj) R-sq(pred) S R-sq R-sq (adj) R-sq(pred) S R-sq 0.09% 0.00% 0.00% 0.00% 0.00% Resp(pred) S R-sq (adj) R-sq(pred) S R-sq 1 4.57 4.575 0.56 0.455 Regression 1 1117 1116.67 238.22 0.000 Regression 2 1 4.57 4.575 0.56 0.455 Lower Temp 1 1117 1116.67 238.22 0.000 Regression 2	= 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (mg/L) = 1 Lower Temp - 0.000115 Lower Temp - 0.000114 Lower Temp - 0.000115 Lower Temp - 0.2360 0.0153 - 15.43 0.000 Term Coef SE Coef Value Value VIF Term Coef SE Coef Value V	- 7.841 - 0.000014 Lower Lower = 13.16 - 0.2360 Lower Temp Daily Average DO (mg/L) = 14.871 Lower Temp - 0.000115 Lower Flow T- P- Coef SE Coef Value Value VIF Term Coef SE Coef Value VIF Term Coef SE Coef Value VIF 7.841 0.158 49.75 0.000 Constant 13.156 0.351 37.43 0.000 Constant 14.871 0.409 36.32 0.000014 0.000019 0.75 0.455 1.00 Lower -0.2360 0.0153 -15.43 0.000 1.00 Lower -0.2815 0.0158 -17.85 0.009% 0.00% 0.00% 0.000 2.16506 36.52% 36.37% 35.87% 2.04417 43.55% 43.28% Adj SS Adj F- P- P- 0.09% 0.00% 0.00% 2.16506 36.52% 36.37% 35.87% 2.04417 43.55% 43.28% 1 4.57 4.575 0.56 0.455 Icower Termp 1 1117 11	Second

Table 52. Results of regression analysis for daily average DO (mg/L) at the Lower site.

Simple I	Linear	·Mode	el (Flov	w)		Simple I	linear	Мо	del (Tei	nperat	ture)	Multiple	Lin	ear Re	gressio	n Mod	lel
Middle DC) = 7.48	8 - 0.00	0012 M	iddle		Middle = 1	1.29 – (0.178	5 Middle	Temp		Daily Avera	0				574
												Middle Ter	np - (0.000029	Middle		
T	6-			T- I lue Valu)_ 	T	C)_ 	T	~		Coef Val)_
Term	Co	er SEC	.oer val	lue valu	e vir	Term	Coe	SEC	oef Val	le valu	ie VIF	Term	C	oef SE	Coer vai	ue valu	ie vir
Constant	7.48	88 0.	105 71.	.35 0.00	0	Constant	11.295	5 0.	252 44.8	33 0.00	0	Constant	11.	770 C	.263 44.	76 0.00	0
Middle -	0.00001	2 0.000	007 -1.	.81 0.07	1 1.00	Middle Temp	-0.1785	5 0.0	107 -16.0	54 0.00	0 1.00	Middle Temp	-0.18	874 0.0	0106 -17.	60 0.00	0 1.03
												Middle - Flow	0.0000	029 0.00	0006 -5.	22 0.00	0 1.03
S	R-sq	R-so	q(adj)	R-sq	(pred)	S	R-sc	1 R	-sq(adj)	R-sq	(pred)	S	R-	sq R-:	sq(adj)	R-sq	(pred)
2.27405	0.47%		0.32%		0.00%	1.91477	31.21%	б	31.10%	3	30.78%	1.87486	34.16	5%	33.94%	3	3.62%
ANOVA						ANOVA						ANOVA					
				F-	P-			Adj			P-					F-	P-
Source	DF	Adj SS	Adj MS	Value	Value	Source	DF	SS	Adj MS	F-Value	Value	Source	DF	Adj SS	Adj MS	Value	Value
Regression	1	16.95	16.950	3.28	0.071	Regression	1	1015	1014.65	276.74	0.000	Regression	2	1110.43	555.22	157.95	0.000
Middle	1	16.95	16.950	3.28	0.071	Middle Temp	1	1015	1014.65	276.74	0.000	Middle Temp	1	1089.32	1089.32	309.90	0.000
Error	701	3625.09	5.171			remp						remp					
Lack-of-Fit	543	2872.58	5.290	1.11	0.215	Error	610	2236	3.67			Middle Flow	1	95.79	95.79	27.25	0.000
Pure Error	- 158	752.52	4.763			Total	611	3251				Error	609	2140.69	3.52		
Total	702	3642.04										Total	611	3251.13			

Table 53. Results of regression analysis for daily average DO (mg/L) at the Middle site.

Simple I	linear	Mode	l (Flov	v)		Simple L	inea	r Mod	el (Ten	iperat	ure)	Multiple L	inear	Regree	ssion	Model
Upper DO	= 8.834	- 0.000	065 Up	per Ter	np	Upper = 12	2.29 - (0.2296	Upper Te	emp		Daily Average	e DO (n	ng/L) = 1	3.497	- 0.2250
												Upper Temp	- 0.000	069 Upp	per Flo	
					-				т	-) _					Г- P-
Term	Coe	f SE C	oef Val	ue Valu	e VIF	Term	Coe	ef SE Co	oef Valu	e Valu	e VIF	Term	Coe	ef SE Co	ef Valu	e Value V
Constant	8.83	4 0.	201 43.8	84 0.00	0	Constant	12.29	0 0.3	67 33.4	5 0.00	0	Constant	13.49	7 0.40	02 33.5	5 0.000
Upper -	0.00006	5 0.000	017 -3.	78 0.00	0 1.00	Upper Temp	-0.229	6 0.01	70 -13.5	1 0.00	0 1.00	Upper Temp	-0.255	0 0.010	64 15.5	- 0.000 1.0 4
												Upper Flow	0.00006		12 -5.6	7 0.000 1.0
S	R-sq	R-so	q(adj)	R-sq(pred)	S	R-s	q R-	sq(adj)	R-sq	(pred)	S	R-sq	R-sq(a	ndj)	R-sq(pred
2.43311	4.91%	4	4.57%		3.82%	1.66891	48.36	%	48.09%	4	7.16%	1.54988 55	.69%	55.2	.3%	54.33
ANOVA						ANOVA						ANOVA				
				F-	P-					F-	P-					F- 1
Source	DF	Adj SS	Adj MS	Value	Value	Source	DF	Adj SS	Adj MS	Value	Value	Source	DF	Adj SS A	dj MS	Value Valu
Regression	1	84.44	84.439	14.26	0.000	Regression	1	508.6	508.551	182.59	0.000	Regression	2	585.66 29	92.831	121.91 0.00
Upper	1	84.44	84.439	14.26	0.000	Upper	1	508.6	508.551	182.59	0.000	Upper Temp	1	580.44 58	30.438	241.64 0.00
Error	276	1633.93	5.920			Temp						Upper Flow	1	77.11	77.112	32.10 0.00
Lack-of-Fit	242	1507.78	6.230	1.68	0.036	Error	195	543.1	2.785			Error	194	466.01	2.402	
Pure Error		126.15				Total	196	1051.7				Total		051.67		
Total		1718.37	5.710									1000	150 1	001.07		

Table 54. Results of regression analysis for daily average DO (mg/L) at the Upper site.

Water Quality Variable	Df _n	Df _d	F- statistic	P-value	Interaction?	Group	Df _n		F- statistic	P-value	Comments (Post-hoc Tukey Pairwise comparisons)
Temperature (°C)	40	1161	0.066899	1.000	Not Significant	Site	8	1206	0.433753	0.901224	No significant differences between sites
						Flow Tier	5	1209	64.76315	<0.001	("Avg-3ps"-"Avg- Base"), ("Avg-3ps"- "Avg-Sub"), ("Avg- 3ps"-"Wet-2ps"), ("Avg-3ps"-"Wet- Base"), ("Avg- Base"-"Avg-Sub"), ("Avg-Base"-"Wet- 2ps"), ("Avg-Base"- "Wet-Base"), ("Avg- Base"-"Wet-Sub"), ("Avg-Sub"-"Wet- 2ps"), ("Avg-Sub"- "Wet-Base"), ("Avg- Sub"-"Wet-Sub"), ("Wet-2ps"-"Wet- Base"), ("Wet-2ps"- "Wet-Sub"); all other pairings <u>not</u> significantly different ($p \ge 0.05$)
Salinity (psu)	40	1161	2.184657	< 0.001	Significant	Site	8				
						Flow Tier	5				

Table 55. Summary results of two-way ANOVA for each water quality variable.

Water Quality Variable	Dfn	Df _d	F- statistic	P-value	Interaction?	Group	Df _n	Df _d	F- statistic	P-value	Comments (Post-hoc Tukey Pairwise comparisons)
DO (mg/L)	40	1161	0.746308	0.876472	Not Significant	Site	8	1206	8.310488	<0.001	(B01-B10), (B01- B15), (B05-B36), (B05-B42), (B10- B25), (B10-B31), (B10-B36), (B10-42), (B15-B31), (B15- B36), (B15-B42), (B22-B31), (B22- B36), (B22-B42); all other pairings <u>not</u> significantly different (p>0.05)
						Flow Tier	5	1209	14.39575	<0.001	("Avg-3ps"-"Avg- Base"), ("Avg-3ps"- "Wet-Base"), ("Avg- Base"-"Avg-Sub"), ("Avg-Base"-"Wet- 2ps"), ("Avg-Base"- "Wet-Sub"), ("Avg- Sub"-"Wet-Base"), ("Wet-2ps"-"Wet- Base"), ("Wet-Base", "Wet-Sub"); all other pairings <u>not</u> significantly different ($p \ge 0.05$)
pН	40	1161	2.521501	< 0.001	Significant	Site					
						Flow Tier					

Water Quality Variable	Df _n	Df _d	F- statistic	P-value	Interaction?	Group	Df _n	Df _d	F- statistic	P-value	Comments (Post-hoc Tukey Pairwise comparisons)
Turbidity (NTU)	40	1133	0.862056	0.714253	Not Significant	Site	8	1178	4.697756	<0.001	(B01-B15), (B01- B25), (B01-B31), (B01-B36), (B01- B42), (B05-B36), (B05-B42), (B10- B36), (B10-B42); all other pairings <u>not</u> significantly different (p>0.05)
						Flow Tier	5	1181	21.74872	<0.001	("Avg-3ps"-"Avg- Base"), ("Avg-3ps"- "Avg-Sub"), ("Avg- 3ps"-"Wet-Sub"), ("Avg-Base"-"Avg- Sub"), ("Avg-Base"- "Wet-Sub"), ("Avg- Sub"-"Wet-2ps"), ("Avg-Sub"-"Wet- Base"), ("Wet-2ps"- "Wet-Base"), ("Wet- Base"-"Wet-Sub"); all other pairings <u>not</u> significantly different ($p \ge 0.05$)
Mid- channel Total Depth (m)	40	189	1.163914	0.24873	Not Significant	Site	8	234	26.14108	<0.001	(B01-B05), (B01- B15), (B01-B22), (B01-B42), (B05- B10), (B05-B15), (B05-B25), (B05-

Water Quality Variable	Dfn	Df _d	F- statistic	P-value	Interaction?	Group	Df _n	Df _d	F- statistic	P-value	Comments (Post-hoc Tukey Pairwise comparisons)
											B31), (B10-B15), (B10-B22), (B10- B42), (B15-B25), (B15-B31), (B15- B36), (B22-B25), (B22-B31), (B22- B36), (B25-B31), (B25-B36), (B25- B42), (B31-B42), (B36-B42); all other pairings significantly <u>not</u> different ($p \ge 0.05$)
						Flow Tier	5	237	7.299393	0.001856	("Wet-2ps"-"Avg- Base"), ("Wet-Base"- "Avg-Base"), ("Wet- Sub"-"Avg-Base"), ("Wet-2ps"-"Avg- Sub"), ("Wet-Base"- "Avg-Sub"); all other pairings <u>not</u> significantly different (p>0.05)
Secchi (m)	40	148	0.430	0.9999	Not Significant	Site	8	193	3.76	<0.001	(B01-B22), (B01- B25), (B01-B31), (B01-B36), (B01- B42), (B05-B31), (B05-B36), (B05- B42), (B10-B42); all other pairings <u>not</u>

Water Quality Variable	Dfn	Dfd	F- statistic	P-value	Interaction?	Group	Df _n	Dfd	F- statistic	P-value	Comments (Post-hoc Tukey Pairwise comparisons) significantly different
							_	10.5			(p <u>></u> 0.05)
						Flow Tier	5	196	23.33	<0.001	("Avg-3ps"-"Avg- Sub"), ("Avg-Base"- "Avg-Sub"), ("Avg- Sub"-"Wet-2ps"), ("Avg-Sub"-"Wet- Base"), ("Avg-Sub"- "Wet-Sub"), ("Wet- 2ps"-"Wet-Sub"), ("Wet-Base"-"Wet- Sub"); all other pairings <u>not</u> significantly different ($p \ge 0.05$)

Table 56. Results of two-way ANOVA for water temperature (°C) versus site and flow tier. Factor Informatio

Factor	Туре	Levels	Values			
Site	Fixed	9	B01, B05,	B10, B15,	B22, B25, B	31, B36, B4
Hydrologic Condition-Flow	Fixed	6	Avg-3ps, A	Avg-Base, A	Avg-Sub, We	et-2ps, Wet
Tier			Base, Wet	-Sub		
nalysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Site	8	119.9	14.99	0.46	0.885	
Hydrologic Condition-Flow	5	10515.5	2103.11	64.44	0.000	
Tier						
Error	1201	39196.1	32.64			
Lack-of-Fit	40	100.9	2.52	0.07	1.000	
Pure Error	1161	39095.2	33.67			

Grouping Information for Site Using the Tukey Method and 95% Confidence

5		
Ν	Mean	Grouping
135	24.5378	A
135	24.3685	А
135	24.2854	А
135	23.9873	А
135	23.9685	А
135	23.9587	А
135	23.8009	А
135	23.7656	А
135	23.4648	А
	135 135 135 135 135 135 135 135	N Mean 135 24.5378 135 24.3685 135 24.2854 135 23.9873 135 23.9685 135 23.9685 135 23.8009 135 23.7656 135 23.4648

Means that do not share a letter are significantly different.

Grouping Information for Flow Tier Using the Tukey Method and 95% Confidence

Hydrologic Condition-Flow					
Tier	Ν	Mean	Gro	oup	oing
Wet-2ps	91	31.4503	A		
Avg-3ps	224	25.0429	В		
Wet-Sub	225	24.0662	В	С	
Wet-Base	315	23.5330		С	
Avg-Sub	225	21.1379			D
Avg-Base	135	18.8614			E

Means that do not share a letter are significantly different.

Table 57. Results of two-way ANOVA for dissolved oxygen (DO [mg/L]) versus site and flow tier.

actor information						
Factor	Туре	Levels	Values			
Site	Fixed	9	B01, B05,	B10, B15,	B22, B25, E	331, B36, B42
Hydrologic Condition-Flow	Fixed	6	Avg-3ps, A	Avg-Base, A	Avg-Sub, W	et-2ps, Wet-
Tier			Base, Wet	-Sub		
analysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Site	8	293.3	36.668	8.32	0.000	
Hydrologic Condition-Flow	5	316.5	63.300	14.36	0.000	
Tier						
Error	1201	5294.6	4.409			
Lack-of-Fit	40	131.2	3.281	0.74	0.886	
Pure Error	1161	5163.4	4.447			
Total	1214	5904.2				

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site	Ν	Mean	G	irοι	ıpiı	ng
B42	135 7	7.30718	А			
B36	135 7	7.04614	А			
B31	135 6	5.77155	А	В		
B01	135 6	5.76246	А	В		
B25	135 6	5.68703	А	В	С	
B05	135 6	5.17718		В	С	D
B22	135 5	5.96763			С	D
B15	135 5	5.96392			С	D
B10	135 5	5.89081				D

Means that do not share a letter are significantly different.

Grouping Information for Flow Tier Using the Tukey Method and 95% Confidence

Hydrologic Condition-Flow			
Tier	Ν	Mean	Grouping
Avg-Base	135 7	7.50452	A
Wet-Base	315 7	7.01048	A
Avg-3ps	224 6	5.41422	В
Wet-Sub	225 6	5.20196	В
Avg-Sub	225 6	5.08596	В
Wet-2ps	91 5	5.83215	В

Means that do not share a letter are significantly different.

Table 58. Results of two-way ANOVA for turbidity (NTU) versus site and flow tier.

Factor	Туре	Levels Values
Site	Fixed	9 B01, B05, B10, B15, B22, B25, B31, B36, B42
Hydrologic Condition-Flow Tier	Fixed	6 Avg-3ps, Avg-Base, Avg-Sub, Wet-2ps, Wet- Base, Wet-Sub

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	8	996349	124544	5.43	0.000
Hydrologic Condition-Flow	5	2625873	525175	22.91	0.000
Tier					
Error	1173	26887116	22922		
Lack-of-Fit	40	791822	19796	0.86	0.719
Pure Error	1133	26095294	23032		
Total	1186	30454549			

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site	Ν	Mean	C	Groupi	ing
B42	135	114.465	А		
B36	135	107.313	А		
B31	135	104.465	А	В	
B15	130	102.164	А	В	
B25	133	96.448	А	В	
B22	130	82.189	А	В	С
B05	130	47.164		В	С
B10	129	46.953		В	С
B01	130	33.685			С

Means that do not share a letter are significantly different.

Grouping Information for Flow Tier Using the Tukey Method and 95% Confidence

Condition-Flow				
Tier	Ν	Mean	Groupi	ng
Avg-3ps	224	141.743 A	λ	
Wet-Base	315	114.521 A	ΑВ	
Wet-2ps	91	100.250 A	ΑВ	
Avg-Base	135	87.320	В	
Wet-Sub	224	26.521		С
Avg-Sub	198	19.542		С

Table 59. Results of two-way ANOVA for mid-channel total depth (m) versus site and flow tier.

Factor	Туре	Levels	Values			
Site	Fixed			, B10, B15,	B22, B25,	B31, B36, B4
Hydrologic Condition-Flow	Fixed	6	Avg-3ps,	Avg-Base,	Avg-Sub, V	Vet-2ps, Wet
Tier			Base, We	t-Sub	-	
nalysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Value	
Site	8	246.54	30.817	26.16	0.000	
Hydrologic Condition-Flow	5	41.81	8.362	7.10	0.000	
Tier						
Error	229	269.72	1.178			
Lack-of-Fit	40	53.79	1.345	1.18	0.234	
Pure Error	189	215.93	1.142			
Total	242	556.93				

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site	NI	Mean	Gro	oup	oing]	
B15	27 8.0	08043 A	٩				
B42	27 7.5	51169 A	ΑB				
B22	27 7.4	46021 A	ΑB				
B05	27 6.8	30951	В	С			
B36	27 6.3	33003		С	D		
B31	27 5.8	30984			D		
B01	27 5.6	59852			D	Е	
B10	27 5.6	59610			D	Е	
B25	27 4.8	32414				Е	

Means that do not share a letter are significantly different.

Grouping Information for Flow Tier Using the Tukey Method and 95% Confidence

Hydrologic						
Condition-Flow						
Tier	N Mean	Group	ing			
Wet-2ps	19 7.16939 A					
Wet-Base	63 6.89330 A					
Wet-Sub	45 6.53700 A	В				
Avg-3ps	44 6.38176 A	В	С			
Avg-Sub	45 6.06620	В	С			
Avg-Base	27 5.76600		С			
Means that do not share a letter are significantly different.						

Table 60. Results of two-way ANOVA for secchi disk transparency (m) versus site and flow tier.

Factor	Туре	Levels Values
Site	Fixed	9 B01, B05, B10, B15, B22, B25, B31, B36, B42
Flow Tie	r Fixed	6 Average-3ps, Average-Base, Average-Subsistence, Wet-2ps,
		Wet-Base, Wet-Subsistence

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	8	0.5200	0.065001	6.47	0.000
Flow Tier	5	1.4355	0.287091	28.60	0.000
Error	188	1.8873	0.010039		
Lack-of-Fit	40	0.1970	0.004924	0.43	0.999
Pure Error	148	1.6903	0.011421		
Total	201	3.8402			

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site	Ν	Mean	(Grou	ıpiı	ng
B01	27 0	.267776	А			
B05	17 0	.254122	А	В		
B10	27 0	.221110	А	В	С	
B15	17 0	.210946	А	В	С	D
B22	27 0	.175665		В	С	D
B25	17 0	.162711		В	С	D
B31	26 0	.151212			С	D
B36	17 0	.139064			С	D
B42	27 0	.114851				D

Means that do not share a letter are significantly different.

Grouping Information for Flow Tier Using the Tukey Method and 95% Confidence

Flow Tier	Ν	Mean	Group	ing			
Average-	33 0	.358280	A				
Subsistence							
Wet-Subsistence	45 0	.221733	В				
Average-Base	19 0	.162412	В	С			
Average-3ps	32 0	.156152	В	С			
Wet-2ps	14 0	.118816		С			
Wet-Base	59 0	.114244		С			
Means that do not share a letter are significantly different.							

Table 61. Results of two-way ANOVA for salinity(psu) versus site and flow tier.

Factor	Туре	Levels Values
Site	Fixed	9 B01, B05, B10, B15, B22, B25, B31, B36, B42
Hydrologic Condition-Flow	Fixed	6 Avg-3ps, Avg-Base, Avg-Sub, Wet-2ps, Wet-
Tier		Base,
		Wet-Sub

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	8	39822	4977.81	80.79	0.000
Hydrologic Condition-Flow	5	14316	2863.22	46.47	0.000
Tier					
Error	1201	73997	61.61		
Lack-of-Fit	40	5295	132.37	2.24	0.000
Pure Error	1161	68702	59.18		
Total	1214	128212			

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site N Mean Grouping

B01	27 0.267776 A				
B05	17 0.254122 A	В			
B10	27 0.221110	В	С		
B15	17 0.210946		С	D	
B22	27 0.175665			D	
B25	17 0.162711				Е
B31	26 0.151212				Е
B36	17 0.139064				Е
B42	27 0.114851				Е

Means that do not share a letter are significantly different.

Grouping Information Using the Tukey Method and 95% Confidence

Hydrologic Condition-Flow						
Tier	Ν	Mean	Grou	ıpiı	ng	
Avg-Sub	225	13.3780	A			
Wet-Sub	225	9.9420	В			
Avg-Base	135	7.8296	В			
Wet-2ps	91	7.7728	В	С		
Wet-Base	315	5.3673		С		
Avg-3ps	224	3.3582			D	
Means that do not share a letter are significantly different.						

Table 62. Results of two-way ANOVA for pH versus site and flow tier.

Factor	Туре	Levels Values
Site	Fixed	9 B01, B05, B10, B15, B22, B25, B31, B36, B42
Hydrologic Condition-Flow	Fixed	6 Avg-3ps, Avg-Base, Avg-Sub, Wet-2ps, Wet-
Tier		Base,
		Wet-Sub

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Site	8	2.510	0.31375	9.31	0.000
Hydrologic Condition-Flow	5	7.753	1.55058	46.01	0.000
Tier					
Error	1201	40.476	0.03370		
Lack-of-Fit	40	3.256	0.08139	2.54	0.000
Pure Error	1161	37.220	0.03206		
Total	1214	50.780			

Grouping Information for Site Using the Tukey Method and 95% Confidence

Site N Mean Grouping

B01	27 0.267776 A			
B05	17 0.254122 A	В		
B10	27 0.221110	В	С	
B15	17 0.210946	В	С	
B22	27 0.175665	В	С	
B25	17 0.162711	В	С	
B31	26 0.151212	В	С	
B36	17 0.139064		С	
B42	27 0.114851		С	

Means that do not share a letter are significantly different.

Grouping Information for Site Using the Tukey Method and 95% Confidence

Hydrologic	
Condition-Flow	
Tier	N Mean Grouping
Wet-Sub	225 7.82880 A
Wet-2ps	91 7.82580 A B
Wet-Base	315 7.82378 A
Avg-Sub	225 7.77133 В
Avg-Base	135 7.67630 C
Avg-3ps	224 7.62563 C
Means that do not sh	are a letter are significantly different.

Interaction	Dfn	Dfd	F-	P-value	Comments		
Group			statistic		(Post-hoc Tukey Pairwise comparisons)		
B01	5	129	5.050726	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-"Wet-2ps"); all other pairings		
					<u>not</u> significantly different ($p \ge 0.05$)		
B05	5	129	5.050726	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-"Wet-2ps"), ("Avg-3ps"-		
					"Wet-Sub"), ("Avg-Sub"-"Wet-Base"); all other pairings <u>not</u>		
					significantly different (p>0.05)		
B10	5	129	5.050726	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-"Wet-Sub"), ("Avg-Sub"-		
					"Wet-Base"), ("Wet-Base"-"Wet-Sub"); all other pairings <u>not</u>		
					significantly different (p≥0.05)		
B15	5	129	6.520119	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-"Wet-Sub"), ("Avg-Sub"-		
					"Wet-Base"), ("Wet-Base"-"Wet-Sub"); all other pairings not		
					significantly different ($p \ge 0.05$)		
B22	5	129	8.818094	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-"Wet-Sub"), ("Avg-Sub"-		
					"Wet-2ps"), ("Avg-Sub"-"Wet-Base"), ("Wet-Base"-"Wet-Sub");		
					all other pairings <u>not</u> significantly different ($p \ge 0.05$)		
B25	5	129	10.80585	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Avg-Sub"), ("Avg-Sub"-		
					"Wet-2ps"), ("Avg-Sub"-"Wet-Base"), ("Avg-Sub"-"Wet-Sub");		
					all other pairings <u>not</u> significantly different ($p \ge 0.05$)		
B31	5	129	6.167829	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-Sub"-"Wet-2ps"), ("Avg-Sub"-		
					"Wet-Base"); all other pairings <u>not</u> significantly different (p>0.05)		
B36	5	129	7.689152	< 0.001	("Avg-3ps"-"Avg-Sub"), ("Avg-Base"-"Avg-Sub"), ("Avg-Sub"-		
					"Wet-2ps"), ("Avg-Sub"-"Wet-Base"), ("Avg-Sub"-"Wet-Sub");		
					all other pairings <u>not</u> significantly different ($p \ge 0.05$)		
B42	5	129	3.663706	0.003922	("Avg-3ps"-"Avg-Sub"), ("Avg-Base"-"Avg-Sub"), ("Avg-Sub"-		
					"Wet-Base"), ("Avg-Sub"-"Wet-Sub"); all other pairings not		
					significantly different ($p \ge 0.05$)		

Table 63. Results of reduced ANOVA of significant differences in salinity (psu) between flow tiers for each sample site.

Interaction	Dfn	Dfd	F -	P-	Comments				
Group			statistic	value	(Post-hoc Tukey Pairwise comparisons)				
"Avg-3ps"-Site	8	216	9.718348	< 0.001	(B01-B15), (B01-B22), (B01-B25), (B01-B31), (B01-B36), (B01-				
					B42), (B05-B25), (B05-B31), (B05-B36), (B05-B42), (B10-B25)				
					(B10-B31), (B10-B36), (B10-B42); all other pairings not				
					significantly different (p>0.05)				
"Avg-Base"-Site	8	126	5.550799	< 0.001	(B01-B36), (B01-B42), (B05-B31), (B05-B36), (B05-B42), (B10-				
					B36), (B10-B42); all other pairings not significantly different				
					(<u>p≥0.05</u>)				
"Avg-Sub"-Site	8	216	20.84745	< 0.001	(B01-B25), (B01-B31), (B01-B36), (B01-B42), (B05-B25), (B05-				
					B31), (B05-B36), (B05-B42), (B10-B25), (B10-B31), (B10-B36),				
					(B10-B42), (B15-B25), (B15-B31), (B15-B36), (B15-B42), (B22-				
					B31), (B22-B36), (B22-B42), (B25-B42); all other pairings not				
					significantly different (p>0.05)				
"Wet-2ps"-Site	8	81	10.06727	< 0.001	(B01-B25), (B01-B31), (B01-B36), (B01-B42), (B05-B25), (B05-				
					B31), (B05-B36), (B05-B42), (B10-B25), (B10-B31), (B10-B36),				
					(B10-B42), (B15-B25), (B15-B31), (B15-B36), (B15-B42), (B22-				
					B31), (B22-B36), (B22-B42), (B25-B42); all other pairings not				
					significantly different ($p \ge 0.05$)				
"Wet-Base"-Site	8	306	24.83494	< 0.001	(B01-B10), (B01-B15), (B01-B22), (B01-B25), (B01-B31), (B01-				
					B36), (B01-B42), (B05-B15), (B05-B22), (B05-B25), (B05-B31),				
					(B05-B36), (B05-B42), (B10-B22), (B10-B25), (B10-B31), (B10-				
					B36), (B10-B42), (B15-B25), (B15-B31), (B15-B36), (B15-B42);				
					all other pairings not significantly different ($p \ge 0.05$)				
"Wet-Sub"-Site	8	216	21.32549	< 0.001	(B01-B25), (B01-B31), (B01-B36), (B01-B42), (B05-B25), (B05-				
					B31), (B05-B36), (B05-B42), (B10-B25), (B10-B31), (B10-B36),				
					(B10-B42), (B15-B25), (B15-B31), (B15-B36), (B15-B42), (B22-				
					B25), (B22-B31), (B22-B36), (B22-B42); all other pairings not				
					significantly different ($p \ge 0.05$)				

Table 64. Results of reduced ANOVA of significant differences in salinity (psu) between sample sites for each flow tier.

Interaction	Dfn	Dfd	F -	P-value	Comments
Group			statistic		(Post-hoc Tukey Pairwise comparisons)
B01	5	129	10.43957	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-
					"Wet-2ps"), ("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"); all
					other pairings <u>not</u> significantly different (p≥0.05)
B05	5	129	11.36416	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-
					"Wet-2ps"), ("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"); all
					other pairings <u>not</u> significantly different (p≥0.05)
B10	5	129	5.212597	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-
					"Wet-Base"), ("Avg-3ps"-"Wet-Sub"); all other pairings not
					significantly different (p≥0.05)
B15	5	129	6.901875	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Avg-Sub"), ("Avg-3ps"-
					"Wet-2ps"), ("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"); all
					other pairings <u>not</u> significantly different (p≥0.05)
B22	5	129	4.142086	0.0016	("Avg-3ps"-"Wet-Base"); all other pairings <u>not</u> significantly
					different (p≥0.05)
B25	5	129	4.152296	0.00157	("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"); all other
					pairings <u>not</u> significantly different (p>0.05)
B31	5	129	5.953704	< 0.001	("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"), ("Avg-Base"-
					"Wet-2ps"), ("Avg-Base"-"Wet-Base"), ("Avg-Base"-"Wet-Sub");
					all other pairings <u>not</u> significantly different ($p \ge 0.05$)
B36	5	129	7.24328	< 0.001	("Avg-3ps"-"Wet-Base"), ("Avg-3ps"-"Wet-Sub"), ("Avg-Base"-
					"Wet-Base"), ("Avg-Base"-"Wet-Sub"), ("Avg-Sub"-"Wet-Sub");
					all other pairings <u>not</u> significantly different ($p \ge 0.05$)
B42	5	129	16.23891	< 0.001	("Avg-3ps"-"Avg-Base"), ("Avg-3ps"-"Wet-2ps"), ("Avg-3ps"-
					"Wet-Sub"), ("Avg-Base"-"Avg-Sub"), ("Avg-Base"-"Wet-2ps"),
					("Avg-Base"-"Wet-Base"), ("Avg-Base"-"Wet-Sub"), ("Avg-Sub"-
					"Wet-Sub"); all other pairings <u>not</u> significantly different ($p \ge 0.05$)

Table 65. Results of reduced ANOVA of significant differences in pH between flow tiers for each sample site.

Interaction	Dfn	Dfd	F-	P-value	Comments	
Group			statistic		(Post-hoc Tukey Pairwise comparisons)	
"Avg-3ps"-Site	8	216	5.360723	< 0.001	(B01-B15), (B01-B22), (B15-B25), (B15-B31), (B15-B42),	
					(B22-B42); all other pairings not significantly different ($p \ge 0.05$)	
"Avg-Base"-Site	8	126	4.024329	< 0.001	(B01-B31), (B01-B42), (B05-B42), (B10-B42), (B15-B42); all	
					other pairings not significantly different ($p \ge 0.05$)	
"Avg-Sub"-Site	8	216	6.056401	< 0.001	(B01-B10), (B01-15), (B01-B22), (B01-B25), (B01-B31), (B01-	
					B36), (B01-B42), (B05-B15), (B05-B22), (B05-B36); all other	
					pairings not significantly different ($p \ge 0.05$)	
"Wet-2ps"-Site	8	81	0.648222	0.734925	No significant differences between sites ($p \ge 0.05$)	
"Wet-Base"-Site	8	306	1.714807	0.094258	No significant differences between sites ($p \ge 0.05$)	
"Wet-Sub"-Site	8	216	3.371165	0.001153	(B15-B42), (B22-B42); all other pairings not significantly	
					different (p \geq 0.05)	

Table 66. Results of reduced ANOVA of significant differences in pH between sample sites for each flow tier.

Table 67. Results of Principal Component Analysis (PCA) for bottom water quality profile sample sites in the river (Figure 28).

Principal Component Analysis

Data worksheet Name: Data1 Data type: Environmental Sample selection: All Variable selection: All

Eigenvalues

ΡČ	Eigenvalues	%Variation	Cum.%Variation
1	2.19	54.7	54.7
2	1.07	26.8	81.4
3	0.538	13.5	94.9
4	0.204	5.1	100.0

Eigenvectors

(Coefficients in the lin	ear combi	nations of	variables	making up PC's)
Variable		PC2		
Temp (°C)	-0.452	0.641	-0.320	-0.531
Salinity (psu)		-0.361		
DO (mg/L)	0.613	-0.234	-0.093	-0.749
USGS Daily Avg.				
Discharge (cfs)	0.387	0.635	0.668	0.035

Table 68. Results of Principal Component Analysis (PCA) for surface water quality profile of sample sites in the river (Figure 29).

Principal Component Analysis

Data worksheet Name: Data1 Data type: Environmental Sample selection: All Variable selection: All

_

Eigenvalues PC Eigenvalues %Variation Cum.%Variation 1 1.78 44.5 44.5 2 79.4 1.4 34.9 3 95.2 0.632 15.8 4 0.192 4.8 100.0

Eigenvectors				
(Coefficients in the linea	r combinat	ions of va	riables ma	king up PC's)
Variable		PC2		
Temperature (°C)	0.690	0.106	-0.292	0.654
Salinity (psu)	0.157	-0.692	0.662	0.242
DO (mg/L)	-0.706	-0.069	-0.156	0.687
USGS Daily				
Average Discharge				
(cfs)	-0.019	0.711	0.673	0.205

Table 69. Results of Principal Component Analysis (PCA) for bottom water quality profile of GOM sites (Figure 30).

Principal Component Analysis

Data worksheet Name: Data1 Data type: Environmental Sample selection: All Variable selection: All

Eige	envalues		
ΡČ	Eigenvalues	%Variation	Cum.%Variation
1	2.74	68.6	68.6
2	1.21	30.2	98.8
3	0.0328	0.8	99.6
4	0.0146	0.4	100.0

<i>Eigenvectors</i> (Coefficients in the linear combination)	s of variah	les makino	ı un PC's)	
Variable	PC1			PC4
Temperature (°C)	-0.596	0.105	-0.403	-0.687
Salinity (psu)	-0.577	-0.247	-0.374	0.682
DO (mg/L)	0.537	-0.398	-0.738	-0.094
<u>Mid-channel Total Depth (m)</u>	-0.153	-0.877	0.391	-0.232

Table 70. Results of Principal Component Analysis (PCA) for surface water quality profile of GOM sites (Figure 30).

Principal Component Analysis

Data worksheet Name: Data4 Data type: Environmental Sample selection: All Variable selection: All

Eigenvalues

РČ	Eigenvalues	%Variation	Cum.%Variation
1	1.62	40.5	40.5
2	1.35	33.7	74.2
3	0.746	18.6	92.9
4	0.284	7.1	100.0

Eigenvectors

(Coefficients in the linear combinations of variables making up PC's)									
Variable	PC1	PC2	PC3	PC4					
Temperature (°C)	-0.673	0.270	0.266	0.635					
Salinity (psu)	0.722	0.118	0.095	0.675					
DO (mg/L)	0.159	0.702	0.585	-0.375					
Mid-channel Total Depth (m)	-0.023	0.649	-0.760	0.018					

APPENDIX J:

STATISTICAL OUTPUT FOR NEKTON RESULTS

	River.Kilometer	Julian.Day	TemperatureC.	Salinitypsu.	DOmg.L.	pН
River.Kilometer	0	1	1	8.36E-08	0.620211028	1
Julian.Day	0.067302468	0	0.368941364	0.119949866	0.274549575	1
TemperatureC.	0.125356915	0.002132609	0	0.472194478	7.37E-05	0.009738952
Salinitypsu.	2.97E-10	0.000615128	0.002914781	0	0.000229573	1
DOmg.L.	0.004042013	0.001542413	2.77E-07	8.90E-07	0	0.000181633
pH	0.757954739	0.10766049	4.23E-05	0.061702323	6.99E-07	0
TurbidityNTU.	6.85E-05	0.00013339	0.006796547	5.15E-09	1.43E-06	0.017498774
Mid.channel.Total.Depthm.	0.003067059	0.055218765	0.990108812	0.009883555	0.325474418	0.380773912
Secchim.	1.69E-05	5.37E-07	0.000419965	4.55E-10	5.48E-06	0.092033366
Field.Dischargecfs.	0.027194714	6.29E-14	0.002172821	5.52E-05	0.000128461	0.053511874
USGS.Instantaneous.Dischargecfs.	0.015018831	1.00E-12	0.000721028	1.50E-05	3.37E-05	0.042261949
USGS.Daily.Average.Dischargecfs.	0.014196818	1.26E-12	0.000703202	1.31E-05	2.99E-05	0.040707411
Tidal.Heightft.	0.858242817	0.132585647	0.012118917	0.63035574	0.423540948	0.735785953
TotalOT.	9.56E-05	0.157855534	0.795926343	0.00056735	0.091419603	0.779817427
Species.RichnessOT.	7.72E-11	0.001516068	0.052036472	1.30E-11	0.000635182	0.535470869
Margaleff.RichnessOT.	7.73E-09	0.005487823	0.051460154	1.14E-09	0.000466119	0.365568262
Shannon.WienerOT.	0.003444123	0.020090635	0.013179212	0.000340402	0.000940089	0.080244508
Shannon.EvennessOT.	0.241639513	0.731911008	0.323970618	0.512639214	0.546285628	0.106924694
TotalBT.	0.63317807	0.004444412	0.002639477	0.237114694	0.211479895	0.296763456
Species.RichnessBT.	4.52E-06	0.000133203	0.00037356	2.34E-08	0.00015451	0.279960281
Margaleff.RichnessBT.	1.38E-06	0.002186786	0.00338755	1.17E-07	0.000670762	0.493145143
Shannon.WienerBT.	1.75E-06	0.003878434	0.003142076	2.65E-07	0.000776084	0.504426601
Shannon.EvennessBT.	5.83E-06	0.012888361	0.001817573	1.54E-06	0.000676913	0.458749164
CPUEOT.	9.56E-05	0.154607006	0.786295344	0.000541983	0.08745991	0.794978164
CPUEBT.	0.803661709	0.012292171	0.005074548	0.363928649	0.295788277	0.317121428

Table 71. Pearson correlation analysis p-values for bottom profile data (Figure 31).

		Mid.channel		Field		
	Turbidity.	Total.Depth		Discharge.	USGS.Instantaneous	USGS.Daily.Average
	NTU.	.m.	Secchim.	cfs.	Discharge. cfs.	Discharge .cfs.
River.Kilometer	0.015546043	0.493796475	0.004005168	1	1	1
Julian.Day	0.029038258	1	0.000141181	1.83E-11	2.90E-10	3.63E-10
TemperatureC.	0.992295889	1	0.08567283	0.371552461	0.136995343	0.134311651
Salinitypsu.	1.43E-06	1	1.27E-07	0.012587211	0.003588398	0.003167779
DOmg.L.	0.000361553	1	0.001331055	0.02813295	0.007773465	0.006936853
pH	1	1	1	1	1	1
TurbidityNTU.	0	1	4.27E-06	0.000516472	0.000190187	0.000165943
Mid.channel.Total.Depthm.	0.022066463	0	1	1	1	1
Secchim.	1.55E-08	0.009538659	0	1.00E-06	6.89E-08	5.83E-08
Field.Dischargecfs.	2.07E-06	0.025076618	3.60E-09	0	3.41E-22	5.20E-22
USGS.Instantaneous.Dischargecfs.	7.34E-07	0.021349311	2.44E-10	1.15E-24	0	6.03E-49
USGS.Daily.Average.Dischargecfs.	6.33E-07	0.021088492	2.06E-10	1.76E-24	2.02E-51	0
Tidal.Heightft.	0.688820849	0.789521703	0.261922458	0.249606826	0.186918917	0.192729363
TotalOT.	0.015183458	0.003850807	0.013317624	0.061643966	0.049771769	0.048520314
Species.RichnessOT.	2.25E-06	4.85E-05	6.77E-08	0.000208778	7.74E-05	7.12E-05
Margaleff.RichnessOT.	1.24E-06	0.000410835	9.15E-07	0.00087212	0.000343038	0.000318884
Shannon.WienerOT.	0.000157654	0.059556435	0.000588051	0.008586349	0.004183214	0.004027344
Shannon.EvennessOT.	0.907606527	0.113265685	0.601334173	0.705509942	0.774281982	0.774372696
TotalBT.	0.283064173	0.880153208	0.038860314	0.034869993	0.032053538	0.032376373
Species.RichnessBT.	2.98E-05	0.013838797	8.41E-08	8.42E-05	1.53E-05	1.49E-05
Margaleff.RichnessBT.	0.000175277	0.018471693	2.72E-06	0.001246185	0.000339944	0.000334268
Shannon.WienerBT.	0.000233959	0.019115223	5.25E-06	0.0021379	0.000597403	0.000587522
Shannon.EvennessBT.	0.000772777	0.046395458	2.45E-05	0.007444319	0.002276121	0.002241077
CPUEOT.	0.014424477	0.003738633	0.01281442	0.059391658	0.047830138	0.046613215
CPUEBT.	0.425319448	0.969660596	0.081560417	0.074815495	0.070979935	0.07154225

	Tidal		Species	Margaleff	Shannon	
	Heightft.	TotalOT.	RichnessOT.	RichnessOT.	WienerOT.	Shannon.EvennessOT.
River.Kilometer	1	0.021325446	2.19E-08	2.13E-06	0.544171512	1
Julian.Day	1	1	0.271376153	0.81768562	1	1
TemperatureC.	1	1	1	1	1	1
Salinitypsu.	1	0.112902733	3.72E-09	3.19E-07	0.071048226	1
DOmg.L.	1	1	0.123225351	0.094622199	0.172976413	1
рН	1	1	1	1	1	1
TurbidityNTU.	1	1	0.000558532	0.000315207	0.033895563	1
Mid.channel.Total.Depthm.	1	0.600725942	0.011096456	0.084221109	1	1
Secchim.	1	1	1.83E-05	0.000235097	0.116329428	1
Field.Dischargecfs.	1	1	0.044469617	0.16221439	1	1
USGS.Instantaneous.Dischargecfs.	1	1	0.017404399	0.071048226	0.635848521	1
USGS.Daily.Average.Dischargecfs.	1	1	0.016099272	0.067284544	0.620211028	1
Tidal.Heightft.	0	1	1	1	1	1
TotalOT.	0.926808925	0	0.005106081	0.890312438	1	0.025073449
Species.RichnessOT.	0.610001218	2.17E-05	0	3.27E-10	0.152802395	1
Margaleff.RichnessOT.	0.679795507	0.006056547	1.14E-12	0	9.17E-05	1
Shannon.WienerOT.	0.549945279	0.942256847	0.000817125	3.46E-07	0	0.426570451
Shannon.EvennessOT.	0.73525252	0.000113455	0.209882519	0.843661454	0.002569702	0
TotalBT.	0.162845591	0.102918662	0.408904012	0.28546346	0.036663877	0.175066581
Species.RichnessBT.	0.016052931	0.001985217	1.84E-08	5.22E-07	0.000886819	0.615094841
Margaleff.RichnessBT.	0.029832497	0.000509144	3.96E-08	9.47E-07	0.002518986	0.501913933
Shannon.WienerBT.	0.026599882	0.001055837	7.97E-08	6.86E-07	0.001380084	0.645936204
Shannon.EvennessBT.	0.0278909	0.002647745	1.28E-06	4.54E-06	0.001954652	0.742860102
CPUEOT.	0.926661223	4.14E-52	2.06E-05	0.005841548	0.931968014	0.000119768
CPUEBT.	0.246722489	0.051077595	0.589287194	0.404287641	0.049635513	0.132943123

		Species					
		Richness	Margaleff	Shannon	Shannon		
	TotalBT.	.BT.	RichnessBT.	WienerBT.	EvennessBT.	CPUEOT.	CPUEBT.
River.Kilometer	1	0.001111846	0.000349449	0.000437761	0.00141169	0.021325446	1
Julian.Day	0.671106249	0.029038258	0.371753561	0.601157216	1	1	1
TemperatureC.	0.43287422	0.076953286	0.538620395	0.502732141	0.3217105	1	0.761182232
Salinitypsu.	1	6.38E-06	3.14E-05	7.07E-05	0.000387257	0.108396638	1
DOmg.L.	1	0.033374182	0.129456998	0.146054798	0.129967309	1	1
pH	1	1	1	1	1	1	1
TurbidityNTU.	1	0.006932726	0.037509301	0.049599226	0.146054798	1	1
Mid.channel.Total.Depthm.	1	1	1	1	1	0.586965437	1
Secchim.	1	2.26E-05	0.000672091	0.001281496	0.005738774	1	1
Field.Dischargecfs.	1	0.018868788	0.225559412	0.368941364	1	1	1
USGS.Instantaneous.Dischargecfs	1	0.003634849	0.071048226	0.117090945	0.38238827	1	1
USGS.Daily.Average.Discharge.cfs.	1	0.00356901	0.070196238	0.116329428	0.378741933	1	1
Tidal.Heightft.	1	1	1	1	1	1	1
TotalOT.	1	0.345427795	0.102337859	0.192162343	0.43287422	1.24E-49	1
Species.RichnessOT.	1	5.05E-06	1.08E-05	2.15E-05	0.000324528	0.004855196	1
Margaleff.RichnessOT.	1	0.000137895	0.000242509	0.000179043	0.001111846	0.864549154	1
Shannon.WienerOT.	1	0.164061447	0.420670648	0.248415149	0.34206418	1	1
Shannon.EvennessOT.	1	1	1	1	1	0.026349028	1
TotalBT.	0	1	1	1	1	1	1.34E-23
Species.RichnessBT.	0.085856525	0	4.60E-14	2.21E-13	5.84E-10	0.341781241	1
Margaleff.RichnessBT.	0.383947561	1.58E-16	0	1.42E-25	4.91E-16	0.100835375	1
Shannon.WienerBT.	0.38278006	7.61E-16	4.75E-28	0	2.07E-18	0.189570824	1
Shannon.EvennessBT.	0.449545491	2.04E-12	1.68E-18	7.03E-21	0	0.428956784	1
CPUEOT.	4.14E-52	2.06E-05	0.005841548	0.931968014	0.000119768	0.102559125	
CPUEBT.	0.051077595	0.589287194	0.404287641	0.049635513	0.132943123	4.51E-26	

	River.Kilometer	Julian.Day	TemperatureC.	Salinitypsu.	DOmg.L.	pН
River.Kilometer	1	-0.005776496	-0.027098028	-0.748144194	0.193143581	-0.089439176
Julian.Day	-0.005776496	1	0.190080397	0.251883651	-0.18674952	-0.091636025
TemperatureC.	-0.027098028	0.190080397	1	0.238445328	-0.644992748	-0.518407078
Salinitypsu.	-0.748144194	0.251883651	0.238445328	1	-0.550148236	-0.253352986
DOmg.L.	0.193143581	-0.18674952	-0.644992748	-0.550148236	1	0.746540448
pH	-0.089439176	-0.091636025	-0.518407078	-0.253352986	0.746540448	1
TurbidityNTU.	0.324933349	-0.236922721	-0.111836223	-0.504399094	0.404754994	0.26506092
Mid.channel.Total.Depthm.	0.173652669	-0.093269786	0.108447191	-0.088377711	-0.04338449	-0.148360177
Secchim.	-0.47673138	0.406606287	0.349210677	0.581079637	-0.39789242	-0.052293716
Field.Dischargecfs.	0.020553566	-0.73284459	-0.2256172	-0.359809812	0.331686497	0.177494909
USGS.Instantaneous.Dischargecfs.	0.034078766	-0.676235227	-0.300486166	-0.395602095	0.402881958	0.191591937
USGS.Daily.Average.Dischargecfs.	0.040047071	-0.673127996	-0.303605616	-0.40216719	0.408617784	0.195263937
Tidal.Heightft.	0.072516374	0.120190579	0.281487727	-0.115366091	0.045312637	0.029431461
TotalOT.	-0.398487489	0.075128507	-0.096693389	0.370781844	-0.105499734	0.078036181
Species.RichnessOT.	-0.666408965	0.249797304	0.069866769	0.655622798	-0.278885838	0.058381181
Margaleff.RichnessOT.	-0.555531472	0.135480266	-0.009745368	0.572738071	-0.250274706	-0.005845159
Shannon.WienerOT.	-0.26835534	0.118830585	0.11571811	0.327387497	-0.301984192	-0.116065943
Shannon.EvennessOT.	0.13196587	-0.055747586	0.098257442	-0.079742645	-0.098925281	-0.182629837
TotalBT.	0.042117854	-0.323981824	-0.358917069	-0.11101886	0.027393854	0.047659194
Species.RichnessBT.	0.381613575	-0.337778778	-0.379206473	-0.506299344	0.307252366	0.067694048
Margaleff.RichnessBT.	0.417631334	-0.267147486	-0.268880121	-0.500352349	0.268896783	-0.012759166
Shannon.WienerBT.	0.425635146	-0.208730391	-0.306457118	-0.465521447	0.258697939	-0.026895166
Shannon.EvennessBT.	0.362634578	-0.10828738	-0.375252927	-0.404740785	0.320266775	-0.040610731
CPUEOT.	-0.395461067	0.075812529	-0.094709985	0.370509296	-0.111477505	0.074300616
CPUEBT.	0.019285442	-0.301406196	-0.360195427	-0.099558729	0.018034431	0.047791113

Table 72. Pearson correlation analysis correlation coefficients (R) for bottom profile data (Figure 31).

		Mid.channel		Field	USGS.	USGS.Daily.
	Turbidity.	Total.Depth		Discharge.	Instantaneous	Average Discharge
	NTU.	.m.	Secchi m.	cfs.	Discharge. cfs.	.cfs.
River.Kilometer	0.324933349	0.173652669	-0.47673138	0.020553566	0.034078766	0.040047071
Julian.Day	-0.236922721	-0.093269786	0.406606287	-0.73284459	-0.676235227	-0.673127996
TemperatureC.	-0.111836223	0.108447191	0.349210677	-0.2256172	-0.300486166	-0.303605616
Salinitypsu.	-0.504399094	-0.088377711	0.581079637	-0.359809812	-0.395602095	-0.40216719
DOmg.L.	0.404754994	-0.04338449	-0.39789242	0.331686497	0.402881958	0.408617784
pH	0.26506092	-0.148360177	-0.052293716	0.177494909	0.191591937	0.195263937
TurbidityNTU.	1	0.121678618	-0.427592313	0.425649354	0.445265665	0.448585976
Mid.channel.Total.Depthm.	0.121678618	1	-0.140313041	0.16763105	0.199466386	0.199328503
Secchim.	-0.427592313	-0.140313041	1	-0.583429285	-0.638336947	-0.639514444
Field.Dischargecfs.	0.425649354	0.16763105	-0.583429285	1	0.941510563	0.941799017
USGS.Instantaneous.Dischargecfs.	0.445265665	0.199466386	-0.638336947	0.941510563	1	0.999787566
USGS.Daily.Average.Dischargecfs.	0.448585976	0.199328503	-0.639514444	0.941799017	0.999787566	1
Tidal.Heightft.	0.069879071	0.095714561	0.053812883	-0.043419743	-0.079027314	-0.073776763
TotalOT.	-0.141033807	-0.195418752	0.155108683	-0.125546936	-0.146757259	-0.149856482
Species.RichnessOT.	-0.327349281	-0.418703516	0.50691346	-0.338081673	-0.363367491	-0.367276607
Margaleff.RichnessOT.	-0.333395697	-0.292272748	0.409751232	-0.248345976	-0.261784107	-0.264703878
Shannon.WienerOT.	-0.308353556	-0.17230305	0.266729403	-0.160617051	-0.20876202	-0.211627373
Shannon.EvennessOT.	-0.055598287	0.197725716	-0.105702142	0.071672157	0.037113778	0.036262267
TotalBT.	0.043141725	0.013887256	-0.209793523	0.219698444	0.244628549	0.24454565
Species.RichnessBT.	0.326450005	0.178572435	-0.41410412	0.386406101	0.441555793	0.442745827
Margaleff.RichnessBT.	0.248327852	0.121771034	-0.389207604	0.26713174	0.338090346	0.335397585
Shannon.WienerBT.	0.251097651	0.146942852	-0.37622351	0.246697627	0.314779314	0.313485105
Shannon.EvennessBT.	0.191728965	0.074660889	-0.345691582	0.145226222	0.234688651	0.233336878
CPUEOT.	-0.144157001	-0.198225776	0.157029227	-0.128083216	-0.149848332	-0.152876101
CPUEBT.	0.009969719	0.000754376	-0.185007602	0.181211188	0.200396765	0.200167885

	Tidal		Species	Margaleff	Shannon	
	Heightft.	TotalOT.	RichnessOT.	RichnessOT.	WienerOT.	Shannon.EvennessOT.
River.Kilometer	0.072516374	-0.398487489	-0.666408965	-0.555531472	-0.26835534	0.13196587
Julian.Day	0.120190579	0.075128507	0.249797304	0.135480266	0.118830585	-0.055747586
TemperatureC.	0.281487727	-0.096693389	0.069866769	-0.009745368	0.11571811	0.098257442
Salinitypsu.	-0.115366091	0.370781844	0.655622798	0.572738071	0.327387497	-0.079742645
DOmg.L.	0.045312637	-0.105499734	-0.278885838	-0.250274706	-0.301984192	-0.098925281
рН	0.029431461	0.078036181	0.058381181	-0.005845159	-0.116065943	-0.182629837
TurbidityNTU.	0.069879071	-0.141033807	-0.327349281	-0.333395697	-0.308353556	-0.055598287
Mid.channel.Total.Depthm.	0.095714561	-0.195418752	-0.418703516	-0.292272748	-0.17230305	0.197725716
Secchim.	0.053812883	0.155108683	0.50691346	0.409751232	0.266729403	-0.105702142
Field.Dischargecfs.	-0.043419743	-0.125546936	-0.338081673	-0.248345976	-0.160617051	0.071672157
USGS.Instantaneous.Dischargecfs.	-0.079027314	-0.146757259	-0.363367491	-0.261784107	-0.20876202	0.037113778
USGS.Daily.Average.Dischargecfs.	-0.073776763	-0.149856482	-0.367276607	-0.264703878	-0.211627373	0.036262267
Tidal.Heightft.	1	-0.017127615	-0.037880661	-0.026264383	-0.00224018	0.055613209
TotalOT.	-0.017127615	1	0.555111754	0.232613276	-0.22275385	-0.476162244
Species.RichnessOT.	-0.037880661	0.555111754	1	0.837261369	0.425851145	-0.209191826
Margaleff.RichnessOT.	-0.026264383	0.232613276	0.837261369	1	0.699969127	0.167369223
Shannon.WienerOT.	-0.00224018	-0.22275385	0.425851145	0.699969127	1	0.67422626
Shannon.EvennessOT.	0.055613209	-0.476162244	-0.209191826	0.167369223	0.67422626	1
TotalBT.	-0.084695036	0.34520897	-0.059382579	-0.02949972	-0.159204603	-0.065427571
Species.RichnessBT.	-0.310915178	-0.318421151	-0.521026171	-0.39987365	-0.27521492	0.055550157
Margaleff.RichnessBT.	-0.227580496	-0.338166504	-0.500556802	-0.394299995	-0.239947136	0.069166334
Shannon.WienerBT.	-0.232934865	-0.297792282	-0.496584213	-0.426454036	-0.282506526	0.002484399
Shannon.EvennessBT.	-0.18364923	-0.221510318	-0.40740292	-0.361561406	-0.252482066	0.009945475
CPUEOT.	-0.016772078	0.999759658	0.557450945	0.235052853	-0.219929038	-0.476265261
CPUEBT.	-0.029962964	0.380791089	-0.039725999	-0.031407101	-0.162726273	-0.074281196

		Species					
		Richness	Margaleff	Shannon	Shannon		
	TotalBT.	.BT.	RichnessBT.	WienerBT.	EvennessBT.	CPUEOT.	CPUEBT.
River.Kilometer	0.042117854	0.381613575	0.417631334	0.425635146	0.362634578	-0.395461067	0.019285442
Julian.Day	-0.323981824	-0.337778778	-0.267147486	-0.208730391	-0.10828738	0.075812529	-0.301406196
TemperatureC.	-0.358917069	-0.379206473	-0.268880121	-0.306457118	-0.375252927	-0.094709985	-0.360195427
Salinitypsu.	-0.11101886	-0.506299344	-0.500352349	-0.465521447	-0.404740785	0.370509296	-0.099558729
DOmg.L.	0.027393854	0.307252366	0.268896783	0.258697939	0.320266775	-0.111477505	0.018034431
pH	0.047659194	0.067694048	-0.012759166	-0.026895166	-0.040610731	0.074300616	0.047791113
TurbidityNTU.	0.043141725	0.326450005	0.248327852	0.251097651	0.191728965	-0.144157001	0.009969719
Mid.channel.Total.Depthm.	0.013887256	0.178572435	0.121771034	0.146942852	0.074660889	-0.198225776	0.000754376
Secchim.	-0.209793523	-0.41410412	-0.389207604	-0.37622351	-0.345691582	0.157029227	-0.185007602
Field.Dischargecfs.	0.219698444	0.386406101	0.26713174	0.246697627	0.145226222	-0.128083216	0.181211188
USGS.Instantaneous.Dischargecfs	0.244628549	0.441555793	0.338090346	0.314779314	0.234688651	-0.149848332	0.200396765
USGS.Daily.Average.Discharge.cfs.	0.24454565	0.442745827	0.335397585	0.313485105	0.233336878	-0.152876101	0.200167885
Tidal.Heightft.	-0.084695036	-0.310915178	-0.227580496	-0.232934865	-0.18364923	-0.016772078	-0.029962964
TotalOT.	0.34520897	-0.318421151	-0.338166504	-0.297792282	-0.221510318	0.999759658	0.380791089
Species.RichnessOT.	-0.059382579	-0.521026171	-0.500556802	-0.496584213	-0.40740292	0.557450945	-0.039725999
Margaleff.RichnessOT.	-0.02949972	-0.39987365	-0.394299995	-0.426454036	-0.361561406	0.235052853	-0.031407101
Shannon.WienerOT.	-0.159204603	-0.27521492	-0.239947136	-0.282506526	-0.252482066	-0.219929038	-0.162726273
Shannon.EvennessOT.	-0.065427571	0.055550157	0.069166334	0.002484399	0.009945475	-0.476265261	-0.074281196
TotalBT.	1	0.299078085	0.055991855	0.050972373	0.016951359	0.348184736	0.988642998
Species.RichnessBT.	0.299078085	1	0.848486252	0.873305769	0.711218904	-0.317575836	0.248651262
Margaleff.RichnessBT.	0.055991855	0.848486252	1	0.957416913	0.867200804	-0.336951914	0.02906314
Shannon.WienerBT.	0.050972373	0.873305769	0.957416913	1	0.906468804	-0.297355887	0.016713093
Shannon.EvennessBT.	0.016951359	0.711218904	0.867200804	0.906468804	1	-0.222698153	0.000691678
CPUEOT.	0.348184736	-0.317575836	-0.336951914	-0.297355887	-0.222698153	1	0.384072857
CPUEBT.	0.988642998	0.248651262	0.02906314	0.016713093	0.000691678	0.384072857	1

	River.Kilometer	Julian.Day	TemperatureC.	Salinitypsu.	DOmg.L.	pН
River.Kilometer	0	1	1	1.63E-09	1	1
Julian.Day	0.044951388	0	1	0.117537793	1	1
TemperatureC.	0.133061622	0.040993036	0	1	8.39E-09	1
Salinitypsu.	5.76E-12	0.000565086	0.038560745	0	1	1
DOmg.L.	0.337459792	0.524331353	3.00E-11	0.226508306	0	0.046187917
рН	0.27772073	0.011513886	0.059380535	0.160380531	0.000210904	0
TurbidityNTU.	6.19E-05	8.16E-09	0.00407338	4.60E-08	0.149842864	0.048484146
Mid.channel.Total.Depthm.	0.002222055	0.019802007	0.898440823	0.001217573	0.299182135	0.001082773
Secchim.	7.66E-06	1.18E-06	0.001923024	3.65E-11	0.049525916	0.216326289
Field.Dischargecfs.	0.020878797	8.25E-15	0.057388137	9.39E-05	0.656544968	0.004199159
USGS.Instantaneous.Dischargecfs.	0.012746201	1.59E-13	0.025086722	4.03E-05	0.467310959	0.006293871
USGS.Daily.Average.Dischargecfs.	0.012173508	1.88E-13	0.024699404	3.71E-05	0.463515225	0.006451239
Tidal.Heightft.	0.646908253	0.159439108	0.000539423	0.574819012	0.002672533	0.483477344
TotalOT.	0.000142127	0.116277019	0.892320107	0.000879534	0.582377336	0.039724081
Species.RichnessOT.	6.55E-11	0.000747388	0.103942346	1.10E-12	0.528296131	0.026453295
Margaleff.RichnessOT.	7.54E-09	0.002709015	0.135983697	1.50E-09	0.565251059	0.028314645
Shannon.WienerOT.	0.003442963	0.011453013	0.059114736	0.001006196	0.287181183	0.135200203
Shannon.EvennessOT.	0.199859046	0.690132632	0.467640669	0.24145777	0.413422726	0.53478676
TotalBT.	0.514530656	0.006473804	0.002237941	0.125184907	0.018765563	0.729690018
Species.RichnessBT.	6.85E-06	9.14E-05	0.001139751	4.24E-07	0.060159413	0.095574917
Margaleff.RichnessBT.	1.63E-06	0.001392486	0.005790317	7.83E-07	0.103080214	0.10580602
Shannon.WienerBT.	2.14E-06	0.002512479	0.004584614	1.59E-06	0.087356189	0.120822559
Shannon.EvennessBT.	6.87E-06	0.009910607	0.001912165	8.67E-06	0.039758613	0.255714516
CPUEOT.	0.000144416	0.113756349	0.890669478	0.000872185	0.580625949	0.038498024
CPUEBT.	0.51453038	0.006527729	0.002265511	0.12546353	0.018925684	0.730858807

Table 73. Pearson correlation analysis p-values for surface profile data (Figure 32).

		Mid.channel		Field		
	Turbidity.	Total.Depth		Discharge.	USGS.Instantaneous	USGS.Daily.Average
	NTU.	.m.	Secchim.	cfs.	Discharge. cfs.	Discharge .cfs.
River.Kilometer	0.014057602	0.404414046	0.00185264	1	1	1
Julian.Day	2.21E-06	1	0.000299967	2.39E-12	4.58E-11	5.40E-11
TemperatureC.	0.688401211	1	0.359605463	1	1	1
Salinitypsu.	1.23E-05	0.233774009	1.02E-08	0.021031939	0.009343592	0.008654712
DOmg.L.	1	1	1	1	1	1
pH	1	0.212366483	1	0.705458688	0.981143761	0.993490739
TurbidityNTU.	0	0.738211421	2.47E-10	5.83E-08	3.42E-09	2.93E-09
Mid.channel.Total.Depthm.	0.004447057	0	1	0.993490739	0.924089188	0.914754806
Secchim.	8.65E-13	0.006941457	0	1.20E-05	1.56E-06	1.37E-06
Field.Dischargecfs.	2.11E-10	0.006458508	4.49E-08	0	6.00E-22	7.67E-22
USGS.Instantaneous.Dischargecfs.	1.22E-11	0.005739684	5.68E-09	2.03E-24	0	1.11E-50
USGS.Daily.Average.Dischargecfs.	1.04E-11	0.005646635	4.99E-09	2.60E-24	3.73E-53	0
Tidal.Heightft.	0.053400873	0.664135759	0.168720336	0.277143546	0.185671825	0.188972461
TotalOT.	0.004830445	0.00271946	0.015012302	0.047709059	0.039918364	0.039103712
Species.RichnessOT.	7.13E-08	1.70E-05	6.63E-08	0.000118576	5.06E-05	4.72E-05
Margaleff.RichnessOT.	2.14E-06	0.000104843	1.27E-06	0.000516299	0.000251991	0.000238052
Shannon.WienerOT.	0.001057459	0.023463018	0.000775913	0.006289383	0.003620303	0.003529748
Shannon.EvennessOT.	0.502679469	0.1465491	0.503362577	0.613618369	0.659001263	0.657822603
TotalBT.	0.052092173	0.835339374	0.024920599	0.035193099	0.027680022	0.027683225
Species.RichnessBT.	7.90E-09	0.007346239	1.55E-07	6.95E-05	1.24E-05	1.22E-05
Margaleff.RichnessBT.	4.99E-07	0.01053558	2.67E-06	0.000849863	0.000239543	0.000236574
Shannon.WienerBT.	1.23E-06	0.011362424	5.18E-06	0.001477112	0.000423444	0.000417752
Shannon.EvennessBT.	1.31E-05	0.031236325	2.21E-05	0.006200975	0.00197089	0.001947017
CPUEOT.	0.004651297	0.002596832	0.014672568	0.04608585	0.038516663	0.037726506
CPUEBT.	0.052404931	0.834507655	0.025110978	0.035432633	0.027878514	0.02788181

	Tidal		Species	Margaleff	Shannon	
	Heightft.	TotalOT.	RichnessOT.	RichnessOT.	WienerOT.	Shannon.EvennessOT.
River.Kilometer	1	0.031410138	1.82E-08	2.06E-06	0.592189676	1
Julian.Day	1	1	0.152467248	0.476786664	1	1
TemperatureC.	0.112739416	1	1	1	1	1
Salinitypsu.	1	0.175906738	3.14E-10	4.15E-07	0.200232936	1
DOmg.L.	0.47303831	1	1	1	1	1
рН	1	1	1	1	1	1
TurbidityNTU.	1	0.787362611	1.88E-05	0.000533434	0.209376925	1
Mid.channel.Total.Depthm.	1	0.476786664	0.004037736	0.023379886	1	1
Secchim.	1	1	1.76E-05	0.000319939	0.157510255	1
Field.Dischargecfs.	1	1	0.02632394	0.10893907	0.981143761	1
USGS.Instantaneous.Dischargecfs.	1	1	0.011646897	0.054178153	0.615451551	1
USGS.Daily.Average.Dischargecfs.	1	1	0.010894139	0.051657235	0.603586976	1
Tidal.Heightft.	0	1	1	1	1	1
TotalOT.	0.83765553	0	0.005968837	0.934510853	1	0.012073976
Species.RichnessOT.	0.508158901	2.55E-05	0	2.05E-10	0.142957969	1
Margaleff.RichnessOT.	0.582016012	0.005914626	7.14E-13	0	9.69E-05	1
Shannon.WienerOT.	0.453915874	0.941631299	0.000693971	3.71E-07	0	0.73760674
Shannon.EvennessOT.	0.677815118	5.27E-05	0.171855732	0.968805152	0.004416807	0
TotalBT.	0.133569461	0.132864693	0.331809221	0.234095891	0.02464973	0.16395337
Species.RichnessBT.	0.010637267	0.002013618	1.88E-08	4.35E-07	0.000581711	0.598956824
Margaleff.RichnessBT.	0.023864815	0.000520783	2.82E-08	5.02E-07	0.001442921	0.503718966
Shannon.WienerBT.	0.02197786	0.001097271	6.00E-08	3.65E-07	0.000726243	0.656701053
Shannon.EvennessBT.	0.020362339	0.002931886	1.15E-06	3.16E-06	0.001161149	0.759320698
CPUEOT.	0.836574576	7.14E-54	2.46E-05	0.005765412	0.93442106	5.45E-05
CPUEBT.	0.134075691	0.132498122	0.331884415	0.23366098	0.024492653	0.163091448

		Species					
		Richness	Margaleff	Shannon	Shannon		
	TotalBT.	.BT.	RichnessBT.	WienerBT.	EvennessBT.	CPUEOT.	CPUEBT.
River.Kilometer	1	0.001670808	0.000406686	0.000533434	0.001670808	0.031771604	1
Julian.Day	0.993490739	0.020571234	0.265964902	0.449733691	1	1	0.993490739
TemperatureC.	0.405067355	0.221111699	0.924089188	0.756461328	0.35948697	1	0.40779205
Salinitypsu.	1	0.000110305	0.000200427	0.000398047	0.002089677	0.175309217	1
DOmg.L.	1	1	1	1	1	1	1
pH	1	1	1	1	1	1	1
TurbidityNTU.	1	2.15E-06	0.000128847	0.000310082	0.003111865	0.762812727	1
Mid.channel.Total.Depthm.	1	1	1	1	1	0.462236183	1
Secchim.	1	4.08E-05	0.000659162	0.001269714	0.005213739	1	1
Field.Dischargecfs.	1	0.01570553	0.171672302	0.279174257	0.973553042	1	1
USGS.Instantaneous.Dischargecfs	1	0.002972966	0.051741183	0.090193598	0.364614689	1	1
USGS.Daily.Average.Discharge.cfs.	1	0.002921331	0.051573237	0.089399031	0.362145174	1	1
Tidal.Heightft.	1	1	1	1	1	1	1
TotalOT.	1	0.368492034	0.109364505	0.213967937	0.507216314	2.14E-51	1
Species.RichnessOT.	1	5.09E-06	7.58E-06	1.60E-05	0.000293939	0.005769331	1
Margaleff.RichnessOT.	1	0.000112778	0.000128938	9.55E-05	0.000778173	0.924089188	1
Shannon.WienerOT.	1	0.120414102	0.274155084	0.148879822	0.224101775	1	1
Shannon.EvennessOT.	1	1	1	1	1	0.012434894	1
TotalBT.	0	1	1	1	1	1	5.76E-65
Species.RichnessBT.	0.066954636	0	4.94E-14	1.65E-13	5.23E-10	0.364614689	1
Margaleff.RichnessBT.	0.339122443	1.69E-16	0	1.03E-25	6.78E-16	0.108455632	1
Shannon.WienerBT.	0.333238553	5.68E-16	3.48E-28	0	2.24E-18	0.212366483	1
Shannon.EvennessBT.	0.388406559	1.84E-12	2.31E-18	7.60E-21	0	0.50295389	1
CPUEOT.	0.132537812	0.001976656	0.000511583	0.001078002	0.00289054	0	1
CPUEBT.	1.92E-67	0.067065061	0.339384944	0.333388964	0.388617188	0.132170333	0

	River.Kilometer	Julian.Day	TemperatureC.	Salinitypsu.	DOmg.L.	pН
River.Kilometer	1	-0.017988179	-0.019602128	-0.774141788	0.055975444	0.015381705
Julian.Day	-0.017988179	1	0.10414743	0.228260374	0.013129536	0.227683372
TemperatureC.	-0.019602128	0.10414743	1	0.125093829	-0.794809269	-0.406643292
Salinitypsu.	-0.774141788	0.228260374	0.125093829	1	-0.081192775	-0.008239911
DOmg.L.	0.055975444	0.013129536	-0.794809269	-0.081192775	1	0.683654792
pH	0.015381705	0.227683372	-0.406643292	-0.008239911	0.683654792	1
TurbidityNTU.	0.425694242	-0.555919697	-0.321415572	-0.446788961	0.159454453	-0.108485793
Mid.channel.Total.Depthm.	0.180613114	-0.107815872	0.097965268	-0.172597788	-0.136290849	-0.281294405
Secchim.	-0.478294841	0.408229176	0.302650604	0.721734772	-0.326264016	-0.041815285
Field.Dischargecfs.	0.033287011	-0.739456621	-0.135660875	-0.338643949	-0.033212072	-0.314339917
USGS.Instantaneous.Dischargecfs.	0.039362123	-0.676929381	-0.238530626	-0.366958176	0.032659547	-0.341703515
USGS.Daily.Average.Dischargecfs.	0.045109358	-0.673813502	-0.242237919	-0.369120973	0.035353717	-0.339891403
Tidal.Heightft.	0.071703425	0.098790212	0.30428734	-0.103237974	-0.277827151	-0.059231535
TotalOT.	-0.394923785	0.070156114	-0.056185605	0.320290885	0.142760341	0.203172025
Species.RichnessOT.	-0.668008156	0.256044145	0.071324462	0.708362608	-0.008382248	0.206113481
Margaleff.RichnessOT.	-0.557556805	0.142816248	-0.011880777	0.577856927	0.059409067	0.200962076
Shannon.WienerOT.	-0.276231289	0.13809722	0.110480424	0.281368546	-0.033983838	0.181007827
Shannon.EvennessOT.	0.12640401	-0.045680362	0.096992803	-0.150455815	-0.058132609	0.016044708
TotalBT.	0.040195502	-0.316709868	-0.338698158	-0.152550554	0.260897163	0.073795311
Species.RichnessBT.	0.385114822	-0.343795157	-0.374535048	-0.371884868	0.248351619	-0.145017181
Margaleff.RichnessBT.	0.422214732	-0.27792274	-0.260758862	-0.414432905	0.198584045	-0.114163078
Shannon.WienerBT.	0.430287678	-0.220958556	-0.303092027	-0.38703366	0.212730589	-0.122531619
Shannon.EvennessBT.	0.368204475	-0.123526069	-0.377979392	-0.345476171	0.286450459	-0.075542222
CPUEOT.	-0.391881348	0.070786031	-0.054305771	0.317852836	0.143843054	0.205985983
CPUEBT.	0.040121844	-0.316326569	-0.338018303	-0.152429836	0.26014046	0.073398353

Table 74. Pearson correlation analysis correlation coefficients (R) for surface profile data (Figure 32).

		Mid.channel		Field	USGS.	USGS.Daily.
	Turbidity.	Total.Depth		Discharge.	Instantaneous	Average Discharge
	NTU.	.m.	Secchi m.	cfs.	Discharge. cfs.	.cfs.
River.Kilometer	0.425694242	0.180613114	-0.478294841	0.033287011	0.039362123	0.045109358
Julian.Day	-0.555919697	-0.107815872	0.408229176	-0.739456621	-0.676929381	-0.673813502
TemperatureC.	-0.321415572	0.097965268	0.302650604	-0.135660875	-0.238530626	-0.242237919
Salinitypsu.	-0.446788961	-0.172597788	0.721734772	-0.338643949	-0.366958176	-0.369120973
DOmg.L.	0.159454453	-0.136290849	-0.326264016	-0.033212072	0.032659547	0.035353717
pH	-0.108485793	-0.281294405	-0.041815285	-0.314339917	-0.341703515	-0.339891403
TurbidityNTU.	1	0.162769268	-0.618175599	0.684960603	0.712100114	0.715472991
Mid.channel.Total.Depthm.	0.162769268	1	-0.144089923	0.181651688	0.205035862	0.204721023
Secchim.	-0.618175599	-0.144089923	1	-0.582328706	-0.639340898	-0.640424012
Field.Dischargecfs.	0.684960603	0.181651688	-0.582328706	1	0.937621476	0.937934233
USGS.Instantaneous.Dischargecfs.	0.712100114	0.205035862	-0.639340898	0.937621476	1	0.999783109
USGS.Daily.Average.Dischargecfs.	0.715472991	0.204721023	-0.640424012	0.937934233	0.999783109	1
Tidal.Heightft.	-0.233730752	0.104114434	0.050426816	-0.015494614	-0.064106923	-0.058568826
TotalOT.	-0.252850343	-0.191452825	0.153719078	-0.119514373	-0.144765594	-0.147737197
Species.RichnessOT.	-0.490946253	-0.422211389	0.508212287	-0.343204541	-0.366266013	-0.369904802
Margaleff.RichnessOT.	-0.373719743	-0.296447209	0.411276702	-0.254348551	-0.26492577	-0.267593849
Shannon.WienerOT.	-0.257551284	-0.184679556	0.270089488	-0.180100275	-0.215718618	-0.218388365
Shannon.EvennessOT.	0.062832034	0.189828483	-0.102694343	0.060691882	0.033078527	0.032121872
TotalBT.	0.172427828	0.0114728	-0.208551584	0.213128233	0.242547726	0.242507889
Species.RichnessBT.	0.529159998	0.184605258	-0.41580604	0.391818033	0.444341155	0.445330119
Margaleff.RichnessBT.	0.457546031	0.131004359	-0.391320378	0.278457254	0.342597229	0.339548102
Shannon.WienerBT.	0.440753928	0.156239895	-0.378436059	0.258894919	0.319500269	0.317914008
Shannon.EvennessBT.	0.366503623	0.085641889	-0.348161992	0.160659341	0.240399716	0.238736747
CPUEOT.	-0.255357066	-0.194210385	0.155622652	-0.12196694	-0.147828781	-0.150728625
CPUEBT.	0.171851488	0.011857173	-0.207609195	0.212621588	0.241893977	0.241850595

	Tidal		Species	Margaleff	Shannon	
	Heightft.	TotalOT.	RichnessOT.	RichnessOT.	WienerOT.	Shannon.EvennessOT.
River.Kilometer	0.071703425	-0.394923785	-0.668008156	-0.557556805	-0.276231289	0.12640401
Julian.Day	0.098790212	0.070156114	0.256044145	0.142816248	0.13809722	-0.045680362
TemperatureC.	0.30428734	-0.056185605	0.071324462	-0.011880777	0.110480424	0.096992803
Salinitypsu.	-0.103237974	0.320290885	0.708362608	0.577856927	0.281368546	-0.150455815
DOmg.L.	-0.277827151	0.142760341	-0.008382248	0.059409067	-0.033983838	-0.058132609
рН	-0.059231535	0.203172025	0.206113481	0.200962076	0.181007827	0.016044708
TurbidityNTU.	-0.233730752	-0.252850343	-0.490946253	-0.373719743	-0.257551284	0.062832034
Mid.channel.Total.Depthm.	0.104114434	-0.191452825	-0.422211389	-0.296447209	-0.184679556	0.189828483
Secchim.	0.050426816	0.153719078	0.508212287	0.411276702	0.270089488	-0.102694343
Field.Dischargecfs.	-0.015494614	-0.119514373	-0.343204541	-0.254348551	-0.180100275	0.060691882
USGS.Instantaneous.Dischargecfs.	-0.064106923	-0.144765594	-0.366266013	-0.26492577	-0.215718618	0.033078527
USGS.Daily.Average.Dischargecfs.	-0.058568826	-0.147737197	-0.369904802	-0.267593849	-0.218388365	0.032121872
Tidal.Heightft.	1	-0.009758637	-0.039827734	-0.02668931	-0.016820613	0.049505352
TotalOT.	-0.009758637	1	0.55212343	0.23052145	-0.224183573	-0.476727872
Species.RichnessOT.	-0.039827734	0.55212343	1	0.837874125	0.429679671	-0.204534862
Margaleff.RichnessOT.	-0.02668931	0.23052145	0.837874125	1	0.700103664	0.17040632
Shannon.WienerOT.	-0.016820613	-0.224183573	0.429679671	0.700103664	1	0.674763008
Shannon. Evenness OT.	0.049505352	-0.476727872	-0.204534862	0.17040632	0.674763008	1
TotalBT.	-0.084728893	0.344416565	-0.057850968	-0.028115114	-0.15437264	-0.063946242
Species.RichnessBT.	-0.305769955	-0.315630917	-0.523157314	-0.402396892	-0.28182491	0.051000826
Margaleff.RichnessBT.	-0.22792583	-0.333724444	-0.503372273	-0.397603864	-0.250535891	0.062637289
Shannon.WienerBT.	-0.228636571	-0.293358795	-0.4994737	-0.429600674	-0.292863766	-0.003811867
Shannon.EvennessBT.	-0.173969065	-0.217046577	-0.411122654	-0.365361723	-0.264370244	0.003027072
CPUEOT.	-0.009385477	0.999759786	0.55443401	0.232936209	-0.2214293	-0.476844894
CPUEBT.	-0.084448207	0.344460893	-0.058216214	-0.028739344	-0.154938367	-0.064628364

		Species					
		Richness	Margaleff	Shannon	Shannon		
	TotalBT.	.BT.	RichnessBT.	WienerBT.	EvennessBT.	CPUEOT.	CPUEBT.
River.Kilometer	0.040195502	0.385114822	0.422214732	0.430287678	0.368204475	-0.391881348	0.040121844
Julian.Day	-0.316709868	-0.343795157	-0.27792274	-0.220958556	-0.123526069	0.070786031	-0.316326569
TemperatureC.	-0.338698158	-0.374535048	-0.260758862	-0.303092027	-0.377979392	-0.054305771	-0.338018303
Salinitypsu.	-0.152550554	-0.371884868	-0.414432905	-0.38703366	-0.345476171	0.317852836	-0.152429836
DOmg.L.	0.260897163	0.248351619	0.198584045	0.212730589	0.286450459	0.143843054	0.26014046
pH	0.073795311	-0.145017181	-0.114163078	-0.122531619	-0.075542222	0.205985983	0.073398353
TurbidityNTU.	0.172427828	0.529159998	0.457546031	0.440753928	0.366503623	-0.255357066	0.171851488
Mid.channel.Total.Depthm.	0.0114728	0.184605258	0.131004359	0.156239895	0.085641889	-0.194210385	0.011857173
Secchim.	-0.208551584	-0.41580604	-0.391320378	-0.378436059	-0.348161992	0.155622652	-0.207609195
Field.Dischargecfs.	0.213128233	0.391818033	0.278457254	0.258894919	0.160659341	-0.12196694	0.212621588
USGS.Instantaneous.Dischargecfs	0.242547726	0.444341155	0.342597229	0.319500269	0.240399716	-0.147828781	0.241893977
USGS.Daily.Average.Discharge.cfs.	0.242507889	0.445330119	0.339548102	0.317914008	0.238736747	-0.150728625	0.241850595
Tidal.Heightft.	-0.084728893	-0.305769955	-0.22792583	-0.228636571	-0.173969065	-0.009385477	-0.084448207
TotalOT.	0.344416565	-0.315630917	-0.333724444	-0.293358795	-0.217046577	0.999759786	0.344460893
Species.RichnessOT.	-0.057850968	-0.523157314	-0.503372273	-0.4994737	-0.411122654	0.55443401	-0.058216214
Margaleff.RichnessOT.	-0.028115114	-0.402396892	-0.397603864	-0.429600674	-0.365361723	0.232936209	-0.028739344
Shannon.WienerOT.	-0.15437264	-0.28182491	-0.250535891	-0.292863766	-0.264370244	-0.2214293	-0.154938367
Shannon.EvennessOT.	-0.063946242	0.051000826	0.062637289	-0.003811867	0.003027072	-0.476844894	-0.064628364
TotalBT.	1	0.296691104	0.053500627	0.048408404	0.01435754	0.347381278	0.999995971
Species.RichnessBT.	0.296691104	1	0.849200382	0.87376947	0.712896094	-0.314764596	0.296712613
Margaleff.RichnessBT.	0.053500627	0.849200382	1	0.957848026	0.868614563	-0.332484239	0.053584277
Shannon.WienerBT.	0.048408404	0.87376947	0.957848026	1	0.907514614	-0.292892047	0.048596661
Shannon.EvennessBT.	0.01435754	0.712896094	0.868614563	0.907514614	1	-0.218191511	0.014409141
CPUEOT.	0.347381278	-0.314764596	-0.332484239	-0.292892047	-0.218191511	1	0.347429575
CPUEBT.	0.999995971	0.296712613	0.053584277	0.048596661	0.014409141	0.347429575	1

Table 75. Results of SIMPER analysis for otter trawl collection resemblance matrix between sample sites.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data2 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups Sample Site в01 в01

в01	в01			
в01	в01			
в01	в01			
в01	в01			
B01	B01			
B01	B01			
B10	в10			
B10	B10			
B10	в10			
B10	в10			
B10	B10			
B10	B10			
B10	в10			
B10	B10			
B10	в10			
B01 B01 B01 B10 B10 B10 B10 B10 B10 B10	в10			
B10	в10			
B10 B10	B10			
B10	в10			
B10 B10	B10 B10			
B10 B10	B10			
B10	B10			
B10 B10 B10 B10	B10 B10			
B10 B10	B10			
B10	B10 B10			
B10	B10 B10			
B10	B10			
B22	B10 B22			
B22	В22 В22			
B22	B22			
B22	B22 B22			
D22 D27	B22 B22			
B22	B22 B22 B22 B22 B22 B22 B22			
B22	B22 B22			
B22 B22	B22 B22			
۵۲۲ ۵۵۹	D22 D27			
D22 p77	B22 B22			
B10 B10 B22 B22 B22 B22 B22 B22 B22 B22 B22 B2	B22 B22 B22 B22			
DZZ	DLL			

в22	в22	
в22	 	
DZZ	DZZ	
B22	B22	
в22	в22	
522	622	
BZZ	BZZ	
в22	в22	
B22 B22 B22 B22 B22 B22 B22 B22	B22	
D22	622	
BZZ	BZZ	
B22 B22 B22 B22 B22 B22 B22 B22	в22	
в22	в22	
D22	622	
DZZ	DZZ	
B22	B22	
B22 B22	в22	
D 2 2	D 2 2	
522	B22 B22 B22 B22 B22 B22 B22 B22 B22 B22	
в22	BZZ	
в31	в31	
B31 B31 B31 B31 B31 B31	B31 B31 B31 B31 B31 B31	
DJ1	DJ1	
ROT	ROT	
В31	B31	
в31	в31	
B31 B31 B31 B31 B31 B31 B31 B31	B31 B31 B31	
- 21	D)T	
B3T	B3T	
в31	в31	
R31	B31 B31 B31	
DJ1	DJ1	
ROT	ROT	
B31	B31	
в31	в31	
в31	B31	
D J L	D 2 1	
B31 B31	B3T	
в31	в31	
R31	B31 B31 B31	
DJ1	DJ1	
B31 B31 B31	В31 В31	
B31	B31	
R31	R31	
D21	D21	
DJ1	531	
B3T	B3T	
в31	в31	
B31 B31 B31 B31 B31 B31	B31 B31 B31 B31 B31	
DJ1	DJ1	
R2T	в31	
B3T	в31	
в31	в31	
B42	В31 В42	
D42	D42	
в42	в42	

B42 B42 B42 B42 B42 B42 B42 B42 B42 B42	B42 B42 B42 B42 B42 B42 B42 B42 B42 B42						
B42 B42 B42 G1D1 G1D1 G1 G1U1 G1U1 G2 G2 G3 G3 G3	B42 B42 B42 G1D1 G1D1 G1 G1 G1U1 G1U1 G2 G2 G3 G3 G3						
<i>Group Bl</i> Average	<i>01</i> similarity: 45.36						
Stelli1 Litoper	ogonias undulatus fer lanceolatus naeus setiferus ectes sapidus	Av.Abund 3.82 3.39 2.20 1.60	Av.Sim 14.07 9.02 6.38 5.00	Sim/SD 2.28 1.02 1.44 1.44	Contrib% 31.02 19.88 14.07 11.03	31.02 50.91 64.98	
	similarity: 41.43						
Species	5	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%	

Micropogonias undulatus Stellifer lanceolatus	3.64 2.32	6.33	2.81 0.97	39.20 15.27	
Litopenaeus setiferus Anchoa mitchilli	1.81 2.11	3.90 3.32	0.82 0.59		63.88 71.90
<i>Group B22</i> Average similarity: 19.94					
Species Ictalurus furcatus Micropogonias undulatus Litopenaeus setiferus	1.49	4.19	0.54	39.99 21.00	39.99 60.99
<i>Group B31</i> Average similarity: 28.06					
Species Av Ictalurus furcatus Macrobrachium ohione		7.20 1.	21 61	rib% Cum 1.30 61. 1.71 83.	30
<i>Group B42</i> Average similarity: 35.08					
Species Av Ictalurus furcatus Macrobrachium ohione	Abund Av 1.75 2 1.01 1	1.69 1.	36 61	rib% Cum 1.83 61. 2.07 93.	83
<i>Group G1D1</i> All the similarities are zero					
<i>Group G1</i> Average similarity: 52.18					
Species Stellifer lanceolatus Micropogonias undulatus Lolliguncula brevis	Av.Abund 4.37 4.47 3.25	13.41	im/SD C0 SD=0! SD=0! SD=0!	ontrib% 26.02 25.70 20.60	26.02 51.72

<i>Group G1U1</i> Average similarity: 49.17						
Species Micropogonias undulatus Lolliguncula brevis Anchoa mitchilli Stellifer lanceolatus	Av.Abund 4.23 3.55 3.94 4.30	Av.Sim 13.08 10.13 9.62 9.43	Sim/SD SD=0! SD=0! SD=0! SD=0!	19.56	Cum.% 26.60 47.20 66.76 85.93	
<i>Group G2</i> Average similarity: 28.06						
Species Lolliguncula brevis Micropogonias undulatus	Av.Abund 2.14 2.14	Av.Sim 12.24 9.70	Sim/SD SD=0! SD=0!	Contrib% 43.62 34.57	Cum.% 43.62 78.19	
<i>Group G3</i> All the similarities are zero						
<i>Groups B01 & B10</i> Average dissimilarity = 58.35						
Species Stellifer lanceolatus Micropogonias undulatus Anchoa mitchilli Litopenaeus setiferus Cynoscion arenarius Callinectes sapidus Ariopsis felis Bagre marinus Bairdiella chrysoura Farfantepenaeus aztecus <i>Groups B01 & B22</i> Average dissimilarity = 80.28	Group B01 Av.Abund 3.39 3.82 0.98 2.20 1.22 1.60 1.04 0.86 1.08 0.82	AV.Àb 2 3 2 1 1 1 1 1 0 1 1 0 0		7.38 5.60 5.30 4.97 3.89 3.67 3.40 3.11 2.96	1.18 9. 1.34 8. 1.31 6. 1.23 6. 1.12 5. 1.08 5. 1.01 5.	
	Group B01	Group	в22			

Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.82	1.76	12.13	1.46	15.11	15.11
Stellifer lanceolatus	3.39	0.33	10.84	1.41	13.51	28.62
Litopenaeus setiferus	2.20	0.83	6.51	1.43	8.10	36.72
Ictalurus furcatus	0.03	1.49	6.00	0.77	7.47	44.19
Callinectes sapidus	1.60	0.42	5.23	1.24	6.51	50.70
Anchoa mitchilli	0.98	0.88	4.97	0.86	6.20	56.90
Cynoscion arenarius	1.22	0.37	3.93	1.12	4.90	61.79
Ariopsis felis	1.04	0.27	3.60	0.89	4.49	66.28
Bairdiella chrysoura	1.08	0.03	3.34	0.89	4.16	70.44

Groups B10 & B22 Average dissimilarity = 80.06

	Group B10	Group B22				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.64	1.76	12.89	1.61	16.10	16.10
Stellifer lanceolatus	2.32	0.33	8.47	1.28	10.58	26.68
Anchoa mitchilli	2.11	0.88	7.74	1.06	9.67	36.35
Ictalurus furcatus	0.04	1.49	6.87	0.80	8.58	44.93
Litopenaeus setiferus	1.81	0.83	6.38	1.25	7.97	52.90
Cynoscion arenarius	1.48	0.37	5.06	1.13	6.32	59.22
Ariopsis felis	1.10	0.27	4.35	1.05	5.44	64.65
Bagre marinus	1.04	0.29	3.68	0.95	4.60	69.25
Callinectes sapidus	0.44	0.42	2.65	0.77	3.31	72.56

Groups B01 & B31 Average dissimilarity = 89.28

	Group B01					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.82	0.93	11.84	1.46	13.26	
Stellifer lanceolatus	3.39	0.03	10.56	1.38	11.83	25.09
Ictalurus furcatus	0.03	3.12	10.13	1.44	11.34	36.43
Litopenaeus setiferus	2.20	0.76	7.00	1.63	7.84	44.27
Macrobrachium ohione	0.07	1.34	5.13	0.78	5.75	50.02
Callinectes sapidus	1.60	0.44	4.92	1.20	5.51	55.53
Anchoa mitchilli	0.98	0.61	4.31	0.80	4.83	60.36
Cynoscion arenarius	1.22	0.36	3.80	1.16	4.25	64.61
Ariopsis felis	1.04	0.00	3.27	0.82	3.66	68.27
Bairdiella chrysoura	1.08	0.00	3.17	0.87		71.83

Groups B10 & B31 Average dissimilarity = 89.45

	Group B10	Group B31				
Species	Av.Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.64	0.93	12.43	1.60	13.90	13.90
Ictalurus furcatus	0.04	3.12	11.30	1.46	12.63	26.53
Stellifer lanceolatus	2.32	0.03	8.18	1.25	9.14	35.67
Anchoa mitchilli	2.11	0.61	6.87	0.96	7.68	43.36
Litopenaeus setiferus	1.81	0.76	6.35	1.22	7.10	50.45
Macrobrachium ohione	0.03	1.34	5.82	0.79	6.50	56.96
Cynoscion arenarius	1.48	0.36	4.78	1.10	5.34	62.30
Ariopsis felis	1.10	0.00	4.10	1.02	4.59	66.89
Bagre marinus	1.04	0.16	3.36	0.90	3.76	70.64

Groups B22 & B31

Average dissimilarity = 79.13

	Group B22					
Species	Av.Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	1.49	3.12	15.08	1.17	19.05	19.05
Macrobrachium ohione	0.35	1.34	9.54	0.81	12.06	31.12
Micropogonias undulatus	1.76	0.93	9.41	0.90	11.89	43.01
Anchoa mitchilli	0.88	0.61	6.88	0.62	8.70	51.71
Litopenaeus setiferus	0.83	0.76	6.05	0.81	7.65	59.36
Callinectes sapidus	0.42	0.44	3.47	0.73	4.38	63.74
Ictalurus punctatus	0.23	0.44	3.46	0.60	4.37	68.12
Cynoscion arenarius	0.37	0.36	2.85	0.54	3.60	71.71

Groups B01 & B42 Average dissimilarity = 96.43

Group B01 Group B42 Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 3.82 0.15 15.59 2.00 16.17 16.17 1.48 12.91 29.08 Species 16.17 16.17 12.91 29.08 8.50 37.58 Micropogonias undulatus Stellifer lanceolatus 0.00 3.39 12.45 1.48 Litopenaeus setiferus Ictalurus furcatus 2.20 8.20 0.00 1.87 0.03 1.75 7.67 1.19 7.95 45.53 Callinectes sapidus 1.60 0.26 5.97 1.39 6.19 51.73

Macrobrachium ohione	0.07	1.01	4.97	0.76	5.15 56.88
Cynoscion arenarius	1.22	0.00	4.25	1.20	4.41 61.29
Anchoa mitchilli	0.98	0.09	4.19	0.82	4.34 65.63
Ariopsis felis	1.04	0.00	3.84	0.85	3.99 69.62
Bairdiella chrysoura	1.08	0.00	3.69	0.90	3.83 73.45

Groups B10 & B42 Average dissimilarity = 96.81

	Group B10	Group B42				
Species	Av.Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.64	0.15	16.65	2.52	17.20	17.20
Stellifer lanceolatus	2.32	0.00	9.85	1.38	10.18	27.37
Ictalurus furcatus	0.04	1.75	8.80	1.27	9.09	36.47
Anchoa mitchilli	2.11	0.09	7.35	1.02	7.60	44.06
Litopenaeus setiferus	1.81	0.00	6.86	1.23	7.08	51.15
Macrobrachium ohione	0.03	1.01	5.74	0.81	5.93	57.07
Cynoscion arenarius	1.48	0.00	5.38	1.12	5.56	62.64
Ariopsis felis	1.10	0.00	4.96	1.09	5.12	67.76
Bagre marinus	1.04	0.00	3.86	0.89	3.98	71.74

Groups B22 & B42 Average dissimilarity = 80.94

Species Ictalurus furcatus Macrobrachium ohione Micropogonias undulatus Anchoa mitchilli Litopenaeus setiferus Callinectes sapidus Ictalurus punctatus Trinectes maculatus	Group B22 Av.Abund 1.49 0.35 1.76 0.88 0.83 0.42 0.23 0.11	Av.Diss 14.94 10.76 10.31 6.99 5.62 3.86 3.16 2.77	Diss/SD 1.16 0.81 0.83 0.62 0.74 0.73 0.53 0.57	$ \begin{array}{r} 18.46\\ 13.30\\ 12.74\\ 8.64\\ 6.94\\ 4.77\\ 3.90 \end{array} $	18.46 31.76 44.50 53.14 60.08	

Groups B31 & B42 Average dissimilarity = 71.18

	Group B31					
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%

Ictalurus furcatus	3.12	1.75	16.00	1.28	22.48 22.48	
Macrobrachium ohione	1.34	1.01	12.19	0.96	17.12 39.60	
Micropogonias undulatus	0.93	0.15	4.68	0.66	6.58 46.18	
Macrobrachium spp.	0.41	0.35	3.98	0.45	5.59 51.77	
Macrobrachium rosenbergii	0.24	0.29	3.81	0.40	5.35 57.12	
Anchoa mitchilli	0.61	0.09	3.68	0.41	5.17 62.29	
Ictalurus punctatus	0.44	0.16	3.68	0.63	5.16 67.45	
Callinectes sapidus	0.44	0.26	3.66	0.74	5.14 72.59	

Groups B01 & G1D1 Average dissimilarity = 83.25

Species Micropogonias undulatus Stellifer lanceolatus Litopenaeus setiferus Callinectes sapidus Anchoa mitchilli Cynoscion arenarius Ariopsis felis	Group B01 Av.Abund 3.82 3.39 2.20 1.60 0.98 1.22 1.04	Av.Abund 0.90 0.80 0.35 0.00 1.20 0.55 0.00	13.79 11.48 7.44 6.90 5.39 3.93 3.81	1.29 1.32 1.47 1.16 1.01 1.07 0.81	13.79 8.94 8.29 6.47 4.72 4.58	16.57 30.36 39.29 47.58 54.06 58.77 63.35
					4.58 4.38	

Groups B10 & G1D1 Average dissimilarity = 81.68

Species Micropogonias undulatus Stellifer lanceolatus Anchoa mitchilli Litopenaeus setiferus Cynoscion arenarius Ariopsis felis Bagre marinus Bairdiella chrysoura Brevoortia patronus	Group B10 Av.Abund 2.32 2.11 1.81 1.48 1.10 1.04 0.52 0.61	Group G1D1 Av.Abund 0.90 0.80 1.20 0.35 0.55 0.00 0.35 0.00 0.00	Av.Diss 14.64 9.16 8.05 6.65 5.40 5.05 4.02 2.91 2.89	Diss/SD 1.19 1.15 1.19 1.15 1.16 0.97 0.95 0.52 0.62	9.86 8.14 6.61 6.18 4.92 3.56	17.92 29.14 39.00 47.14 53.75 59.93
Groups B22 & G1D1						

Average dissimilarity = 89.84

	Group B22	Group G1D1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	1.49	0.00	15.88	0.73	17.67	17.67
Micropogonias undulatus	1.76	0.90	11.92	0.93	13.27	30.94
Anchoa mitchilli	0.88	1.20	11.36	0.77	12.64	43.59
Litopenaeus setiferus	0.83	0.35	7.32	0.61	8.14	51.73
Stellifer lanceolatus	0.33	0.80	4.97	0.97	5.54	57.26
Cynoscion arenarius	0.37	0.55	4.70	0.58	5.23	62.49
Macrobrachium ohione	0.35	0.00	3.63	0.39	4.04	66.53
Chloroscombrus chrysurus	0.03	0.69	3.56	0.96	3.96	70.49

Groups B31 & G1D1 Average dissimilarity = 95.78

	Group B31	Group G1D1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	3.12	0.00	21.53	1.28	22.48	22.48
Macrobrachium ohione	1.34	0.00	13.51	0.65	14.10	36.59
Anchoa mitchilli	0.61	1.20	7.63	0.77	7.97	44.56
Micropogonias undulatus	0.93	0.90	6.82	1.02	7.12	51.67
Litopenaeus setiferus	0.76	0.35	4.08	0.73	4.26	55.93
Stellifer lanceolatus	0.03	0.80	3.86	0.94	4.03	59.97
Cynoscion arenarius	0.36	0.55	3.38	0.95	3.52	63.49
Macrobrachium rosenbergii	0.24	0.00	3.37	0.22	3.52	67.01
Chloroscombrus chrysurus	0.00	0.69	3.30	0.92	3.44	70.45

Groups B42 & G1D1 Average dissimilarity = 98.82

	Group B42	Group G1D1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	1.75	0.00	22.97	1.05	23.24	23.24
Macrobrachium ohione	1.01	0.00	17.43	0.68	17.64	40.88
Anchoa mitchilli	0.09	1.20	7.69	0.87	7.78	48.66
Micropogonias undulatus	0.15	0.90	5.85	0.89	5.92	54.58
Stellifer lanceolatus	0.00	0.80	4.63	0.97	4.68	59.26
Chloroscombrus chrysurus	0.04	0.69	4.29	0.97	4.34	63.61
Macrobrachium spp.	0.35	0.00	3.24	0.30	3.28	66.89
Cynoscion arenarius	0.00	0.55	3.16	0.97	3.20	70.09

Groups B01 & G1 Average dissimilarity = 57.00

Species Lolliguncula brevis Anchoa mitchilli Stellifer lanceolatus Cynoscion arenarius Micropogonias undulatus Selene setapinnis Litopenaeus setiferus Bagre marinus Ariopsis felis	0.08 0.98 3.39 1.22 3.82 0.00 2.20 0.86 1.04	Av.Abund 3.25 2.92 4.37 2.99 4.47 1.89 0.90 1.24 0.80	6.90 4.92 4.69 4.33 3.68 3.43 3.17 2.62 2.46	3.80 1.36 1.07 1.66 1.23 0.97 1.53 1.16 1.14	8.63 8.23 7.59 6.45 6.02 5.56 4.60 4.31	12.1020.7328.9636.5543.0049.0354.5959.1863.49
					4.31 3.76	

Groups B10 & G1 Average dissimilarity = 58.69

	Group B10	Group G1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Lolliguncula brevis	0.03	3.25	7.52	3.76	12.82	12.82
Stellifer lanceolatus	2.32	4.37	5.91	1.38	10.06	22.88
Anchoa mitchilli	2.11	2.92	5.81	1.39	9.89	32.78
Cynoscion arenarius	1.48	2.99	4.77	1.62	8.13	40.91
Micropogonias undulatus	3.64	4.47	3.95	1.48	6.73	47.63
Selene setapinnis	0.00	1.89	3.63	0.96	6.18	53.81
Litopenaeus setiferus	1.81	0.90	3.14	1.38	5.34	59.15
Bagre marinus	1.04	1.24	2.80	1.13	4.76	63.91
Ariopsis felis	1.10	0.80	2.35	1.24	4.00	67.91
Taphromysis louisianae	0.00	0.80	2.27	0.93	3.87	71.78

Groups B22 & G1 Average dissimilarity = 82.10

	Group B22	Group G1				
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.33	4.37	11.76	3.25	14.32	14.32

Micropogonias undulatus	1.76	4.47	10.21	2.15	12.44 26.76
Lolliguncula brevis	0.00	3.25	9.46	4.19	11.52 38.28
Cynoscion arenarius	0.37	2.99	7.34	2.84	8.94 47.22
Anchoa mitchilli	0.88	2.92	6.87	1.45	8.37 55.59
Ictalurus furcatus	1.49	0.00	4.42	0.84	5.38 60.97
Selene setapinnis	0.00	1.89	4.32	0.97	5.26 66.23
Bagre marinus	0.29	1.24	2.97	1.10	3.62 69.85
Taphromysis louisianae	0.00	0.80	2.94	0.95	3.58 73.43
			-		

Groups B31 & G1 Average dissimilarity = 91.09

	Group B31					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.03	4.37	11.92	4.16	13.08	13.08
Micropogonias undulatus	0.93	4.47	10.38	2.13	11.39	24.48
Lolliguncula brevis	0.00	3.25	9.01	3.75	9.89	34.36
Ictalurus furcatus	3.12	0.00	7.90	1.62	8.67	43.04
Cynoscion arenarius	0.36	2.99	7.34	2.83	8.05	51.09
Anchoa mitchilli	0.61	2.92	6.79	1.39	7.45	58.54
Selene setapinnis	0.00	1.89	4.15	0.97	4.55	63.09
Macrobrachium ohione	1.34	0.00	3.81	0.85	4.18	67.28
Litopenaeus setiferus	0.76	0.90	3.23	1.91	3.55	70.82

Groups B42 & G1 Average dissimilarity = 97.53

	Group B42	Group G1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.00	4.37	13.85	7.05	14.20	14.20
Micropogonias undulatus	0.15	4.47	13.64	4.93	13.99	28.19
Lolliguncula brevis	0.00	3.25	10.43	5.16	10.70	38.89
Cynoscion arenarius	0.00	2.99	8.96	7.51	9.19	48.07
Anchoa mitchilli	0.09	2.92	7.69	1.56	7.89	55.96
Ictalurus furcatus	1.75	0.00	5.53	1.48	5.67	61.63
Selene setapinnis	0.00	1.89	4.66	0.98	4.78	66.41
Macrobrachium ohione	1.01	0.00	3.40	0.91	3.49	69.90
Ariopsis felis	0.00	0.80	3.29	0.98	3.37	73.27
Groups G1D1 & G1						

Average dissimilarity = 77.14

	Group G1D1	Group G1				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.80	4.37	11.61	1.94	15.05	15.05
Micropogonias undulatus	0.90	4.47	11.58	1.88	15.01	30.06
Lolliguncula brevis	0.55	3.25	8.89	1.92	11.52	41.58
Cynoscion arenarius	0.55	2.99	7.43	1.90	9.63	51.21
Anchoa mitchilli	1.20	2.92	7.18	1.47	9.31	60.51
Selene setapinnis	0.35	1.89	4.75	1.02	6.16	66.67
Ariopsis felis	0.00	0.80	3.26	0.82	4.22	70.90

Groups B01 & G1U1 Average dissimilarity = 61.65

Species Lolliguncula brevis Anchoa mitchilli Stellifer lanceolatus Litopenaeus setiferus	Group B01 Av.Abund 0.08 0.98 3.39 2.20	3.55 3.94 4.30 0.00	7.04 6.15 5.24 4.15	4.55 2.12 1.16 1.78	8.50 6.74	11.42 21.40 29.89 36.63
Stellifer lanceolatus	3.39	4.30	-			
Cynoscion arenarius	1.22	2.79	3.82	1.67	6.19	42.82
Selene setapinnis Micropogonias undulatus	0.00 3.82	1.67 4.23	3.14 3.12	$0.96 \\ 1.19 \\ 1.41$	5.09 5.07	47.91 52.98
Callinectes sapidus Bagre marinus	$1.60 \\ 0.86$	1.24	2.78	$1.41 \\ 1.16 \\ 0.00$	4.16	61.65
Peprilus triacanthus Taphromysis louisianae Ariopsis felis	0.00 0.08 1.04	1.28 1.04 0.55	2.41 2.30 2.06	0.96 0.97 1.12	3.92 3.73 3.33	65.56 69.30 72.63

Groups B10 & G1U1 Average dissimilarity = 62.22

		Group G1U1				
Species	Av.Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Lolliguncula brevis	0.03	3.55	7.61	4.66	12.24	12.24
Anchoa mitchilli	2.11	3.94	6.14	1.55	9.86	22.10
Stellifer lanceolatus	2.32	4.30	6.10	1.20	9.81	31.91
Cynoscion arenarius	1.48	2.79	4.18	1.58	6.72	38.63
Litopenaeus setiferus	1.81	0.00	3.42	1.15	5.49	44.12
<u>Selene setapinnis</u>	0.00	1.67	3.32	0.96	5.34	49.46

Micropogonias undulatus	3.64	4.23	3.32	1.39	5.33 54.79
Callinectes sapidus	0.44	1.24	2.87	1.13	4.62 59.41
Bagre marinus	1.04	1.24	2.71	1.13	4.35 63.75
Peprilus triacanthus	0.00	1.28	2.56	0.96	4.11 67.86
Taphromysis louisianae	0.00	1.04	2.47	0.95	3.97 71.83

Groups B22 & G1U1 Average dissimilarity = 84.33

	Group B22	Group G1U1				
Species	Av.Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.33	4.30	11.17	1.87	13.25	13.25
Lolliguncula brevis	0.00	3.55	9.34	6.56	11.08	24.33
Micropogonias undulatus	1.76	4.23	8.93	2.28	10.59	34.91
Anchoa mitchilli	0.88	3.94	8.66	2.44	10.27	45.18
Cynoscion arenarius	0.37	2.79	6.47	2.75	7.67	52.85
Ictalurus furcatus	1.49	0.00	3.98	0.87	4.72	57.57
Selene setapinnis	0.00	1.67	3.98	0.97	4.72	62.29
Callinectes sapidus	0.42	1.24	3.67	1.10	4.35	66.64
Taphromysis louisianae	0.00	1.04	3.07	0.97	3.64	70.28

Groups B31 & G1U1 Average dissimilarity = 91.72

	Group B31	Group G1U1				
Species	Av.Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.03	4.30	11.31	2.05	12.33	12.33
Micropogonias undulatus	0.93	4.23	9.07	2.19	9.89	22.22
Anchoa mitchilli	0.61	3.94	9.03	2.65	9.85	32.06
Lolliguncula brevis	0.00	3.55	8.93	5.26	9.74	41.80
Ictalurus furcatus	3.12	0.00	7.24	1.71	7.89	49.70
Cynoscion arenarius	0.36	2.79	6.52	2.87	7.10	56.80
Selene setapinnis	0.00	1.67	3.82	0.96	4.16	60.97
Macrobrachium ohione	1.34	0.00	3.45	0.88	3.76	64.73
Callinectes sapidus	0.44	1.24	3.45	1.06	3.76	68.49
Peprilus triacanthus	0.00	1.28	2.94	0.96	3.21	71.69
Groups B42 & G1U1						
Average dissimilarity = 97.79						
Average dissimilarity $= 97.79$						

	Group B42					
Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.00	4.30	13.04	2.22	13.33	13.33
Micropogonias undulatus	0.15	4.23	11.85	5.42	12.12	25.45
Anchoa mitchilli	0.09	3.94	10.88	4.75	11.13	36.58
Lolliguncula brevis	0.00	3.55	10.20	14.04	10.43	47.01
Cynosčion arenarius	0.00	2.79	7.90	6.23	8.08	55.08
Ictalurus furcatus	1.75	0.00	4.95	1.59	5.06	60.15
Selene setapinnis	0.00	1.67	4.31	0.98	4.41	64.56
Callinectes sapidus	0.26	1.24	3.96	1.06	4.05	68.60
Taphromysis louisianae	0.00	1.04	3.38	0.98	3.45	72.05

Groups G1D1 & G1U1 Average dissimilarity = 77.81

	Group G1D1	Group G1U1				
Species	Av Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	0.80	4.30	10.93	1.34	14.04	14.04
Micropogonias undulatus	0.90	4.23	9.92	2.00	12.75	26.79
Lolliguncula brevis	0.55	3.55	8.73	2.43	11.22	38.01
Anchoa mitchilli	1.20	3.94	8.15	1.37	10.47	48.48
Cynoscion arenarius	0.55	2.79	6.47	1.91	8.32	56.79
Selene setapinnis	0.35	1.67	4.31	0.99	5.54	62.33
Callinectes sapidus	0.00	1.24	3.97	0.83	5.10	67.43
Taphromysis louisianae	0.00	1.04	3.32	0.83	4.27	71.70

Groups G1 & G1U1 Average dissimilarity = 36.43

SpeciesAv.AbundAv.AbundAv.DissDiss/SDContrib%Cum.%Anchoa mitchilli2.923.944.161.3011.4311.43Selene setapinnis1.891.673.230.968.8820.31Stellifer lanceolatus4.374.302.611.927.1727.48Callinectes sapidus0.691.242.271.666.2233.70Bagre marinus1.241.242.160.865.9239.62Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57Ariopsis felis0.800.551.471.174.0363.60		Group G1	Group G1U1				
Selene setapinnis1.891.673.230.968.8820.31Stellifer lanceolatus4.374.302.611.927.1727.48Callinectes sapidus0.691.242.271.666.2233.70Bagre marinus1.241.242.160.865.9239.62Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57		Av.Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus4.374.302.611.927.1727.48Callinectes sapidus0.691.242.271.666.2233.70Bagre marinus1.241.242.160.865.9239.62Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57	Anchoa mitchilli	2.92	3.94				
Callinectes sapidus0.691.242.271.666.2233.70Bagre marinus1.241.242.160.865.9239.62Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57	Selene setapinnis	1.89	1.67	3.23	0.96	8.88	20.31
Bagre marinus1.241.242.160.865.9239.62Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57	Stellifer lanceolatus	4.37	4.30	2.61	1.92	7.17	27.48
Peprilus triacanthus0.001.282.110.855.7945.41Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57	Callinectes sapidus	0.69	1.24		1.66	6.22	33.70
Taphromysis louisianae0.801.041.841.155.0550.47Cynoscion arenarius2.992.791.781.224.8955.35Litopenaeus setiferus0.900.001.537.724.2159.57		1.24	1.24	2.16	0.86	5.92	39.62
Cynoscion arenarius 2.99 2.79 1.78 1.22 4.89 55.35 Litopenaeus setiferus 0.90 0.00 1.53 7.72 4.21 59.57		0.00	1.28	2.11	0.85	5.79	45.41
Cynoscion arenarius 2.99 2.79 1.78 1.22 4.89 55.35 Litopenaeus setiferus 0.90 0.00 1.53 7.72 4.21 59.57	Taphromysis louisianae				1.15	5.05	50.47
	Cynoscion arenarius	2.99	2.79	1.78	1.22	4.89	55.35
Ariopsis felis 0.80 0.55 1.47 1.17 4.03 63.60	Litopenaeus setiferus	0.90	0.00	1.53	7.72	4.21	59.57
	Ariopsis felis	0.80	0.55	1.47	1.17	4.03	63.60

Micropogonias undulatus	4.47	4.23	1.23	1.77	3.38 66.98
Chloroscombrus chrysurus	0.55	0.55	0.95	0.86	2.62 69.59
Lolliguncula brevis	3.25	3.55	0.91	1.16	2.49 72.08

Groups B01 & G2 Average dissimilarity = 68.55

	Group BO1	Group G2				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	3.39	2.17	9.10	1.11	13.28	13.28
Micropogonias undulatus	3.82	2.14	7.68	1.14	11.21	24.48
Lolliguncula brevis	0.08	2.14	6.96	2.15	10.15	34.64
Litopenaeus setiferus	2.20	0.55	5.90	1.40	8.61	43.25
Callinectes sapidus	1.60	0.35	4.62	1.16	6.75	50.00
Ariopsis felis	1.04	1.10	4.08	1.08	5.95	55.94
Cynoscion arenarius	1.22	0.55	3.27	1.08	4.77	60.71
Anchoa mitchilli	0.98	0.90	3.26	1.07	4.75	65.46
Bairdiella chrysoura	1.08	0.00	3.11	0.87	4.54	70.01

Groups B10 & G2 Average dissimilarity = 69.84

	Group B10					
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Stellifer lanceolatus	2.32	2.17	8.75	1.32	12.53	12.53
Lolliguncula brevis	0.03	2.14	8.04	2.49	11.52	24.05
Micropogonias undulatus	3.64	2.14	7.39	1.31	10.59	34.63
Anchoa mitchilli	2.11	0.90	6.58	1.53	9.42	44.05
Litopenaeus setiferus	1.81	0.55	5.34	1.16	7.65	51.70
Ariopsis felis	1.10	1.10	4.47	1.15	6.40	58.10
Cynoscion arenarius	1.48	0.55	4.43	1.15	6.35	64.45
Bagre marinus	1.04	0.00	3.20	0.86	4.59	69.04
Chloroscombrus chrysurus	0.03	0.55	3.04	0.82	4.36	73.40

Groups B22 & G2 Average dissimilarity = 83.79

	Group B22	Group G2				
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Lolliguncula brevis	0.00	2.14	12.25	2.44	14.62	14.62

Micropogonias undulatus	1.76	2.14	11.72	1.61	13.99 28.62
Ictalurus furcatus	1.49	0.00	9.49	0.79	11.32 39.94
Stellifer lanceolatus	0.33	2.17	8.78	1.05	10.48 50.41
Anchoa mitchilli	0.88	0.90	6.73	1.09	8.03 58.45
Chloroscombrus chrysurus	0.03	0.55	5.26	0.81	6.28 64.72
Litopenaeus setiferus	0.83	0.55	4.75	0.86	5.67 70.39

Groups B31 & G2 Average dissimilarity = 92.92

	Group B31	Group G2				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	3.12	0.00	14.84	1.45	15.97	15.97
Lolliguncula brevis	0.00	2.14	11.37	2.11	12.23	28.20
Micropogonias undulatus	0.93	2.14	9.98	1.79	10.75	38.95
Stellifer lanceolatus	0.03	2.17	7.93	0.94	8.53	47.48
Macrobrachium ohione	1.34	0.00	7.91	0.78	8.51	55.99
Anchoa mitchilli	0.61	0.90	6.15	1.10	6.62	62.61
Chloroscombrus chrysurus	0.00	0.55	4.83	0.77	5.20	67.81
Ariopsis felis	0.00	1.10	4.01	0.93	4.32	72.13

Groups B42 & G2 Average dissimilarity = 97.19

	Group B42	Group G2				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Lolliguncula brevis	0.00	2.14	14.36	4.39	14.78	14.78
Micropogonias undulatus	0.15	2.14	13.17	4.54	13.55	28.32
Ictalurus furcatus	1.75	0.00	12.79	1.30	13.15	41.48
Stellifer lanceolatus	0.00	2.17	9.42	0.98	9.70	51.17
Macrobrachium ohione	1.01	0.00	8.54	0.81	8.79	59.96
Anchoa mitchilli	0.09	0.90	6.50	2.71	6.69	66.65
Chloroscombrus chrysurus	0.04	0.55	6.27	0.94	6.45	73.10
<i>Groups G1D1 & G2</i> Average dissimilarity = 75.41						

	Group G1D1	Group G2				
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Lolliguncula brevis	0.55	2.14	13.89	1.01	18.42	18.42

Micropogonias undulatus	0.90	2.14	12.87	1.22	17.06 35.48
Stellifer lanceolatus	0.80	2.17	10.42	1.07	13.82 49.30
Anchoa mitchilli	1.20	0.90	9.08	1.70	12.03 61.34
Chloroscombrus chrysurus	0.69	0.55	7.95	0.66	10.55 71.88

Groups G1 & G2 Average dissimilarity = 55.68

Species Stellifer lanceolatus Micropogonias undulatus Cynoscion arenarius Anchoa mitchilli Selene setapinnis Lolliguncula brevis	Av.Abund 4.37 4.47 2.99 2.92 1.89 3.25	Group G2 Av.Abund 2.17 2.14 0.55 0.90 0.00 2.14	7.66 6.60 6.44 4.91 4.10 3.33	1.03 1.40 1.90 0.93 0.85 1.07	13.76 11.85 11.57 8.82 7.36 5.98	13.76 25.60 37.18 45.99 53.35 59.33
					5.98 5.50 4.89	

Groups G1U1 & G2 Average dissimilarity = 60.99

	Group G1U1	Crown C2				
				- ' /		- 0/
Species	Av.Abund	Av.Abund	AV.D1SS	DISS/SD	Contrib%	Cum.%
Stellifer lanceolatus	4.30	2.17	8.12	1.08	13.32	13.32
Anchoa mitchilli	3.94	0.90	7.49	2.53	12.28	25.60
Cynoscion arenarius	2.79	0.55	5.69	1.91	9.33	34.93
Micropogonias undulatus	4.23	2.14	5.63	1.39	9.23	44.16
Selene setapinnis	1.67	0.00	3.77	0.85	6.18	50.34
Lolliguncula brevis	3.55	2.14	3.76	1.25	6.16	56.50
Callinectes sapidus	1.24	0.35	3.38	0.94	5.54	62.04
Peprilus triacanthus	1.28	0.00	2.90	0.85	4.76	66.80
Taphromysis louisianae	1.04	0.00	2.88	0.84	4.72	71.52

Groups B01 & G3 Average dissimilarity = 93.74

	Group BO1					
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%

Micropogonias undulatus	3.82	0.00	17.95	2.14	19.15 19.15
Stellifer lanceolatus	3.39	0.35	13.13	1.54	14.01 33.15
Litopenaeus setiferus	2.20	0.00	9.03	1.88	9.63 42.79
Callinectes sapidus	1.60	0.00	7.48	1.49	7.98 50.76
Anchoa mitchilli	0.98	0.69	5.44	0.82	5.80 56.57
Cynoscion arenarius	1.22	0.00	4.66	1.20	4.98 61.54
Ariopsis felis	1.04	0.00	4.22	0.84	4.50 66.05
Lolliguncula brevis	0.08	0.80	4.07	0.76	4.34 70.39
÷					

Groups B10 & G3 Average dissimilarity = 93.53

	Group B10					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.64	0.00	19.68	2.67	21.04	21.04
Stellifer lanceolatus	2.32	0.35	10.24	1.39	10.95	31.99
Anchoa mitchilli	2.11	0.69	9.48	1.32	10.14	42.13
Litopenaeus setiferus	1.81	0.00	7.62	1.24	8.15	50.28
Cynoscion arenarius	1.48	0.00	5.95	1.13	6.36	56.64
Ariopsis felis	1.10	0.00	5.62	1.07	6.01	62.65
Lolliguncula brevis	0.03	0.80	4.77	0.81	5.10	67.75
Bagre marinus	1.04	0.00	4.26	0.87	4.55	72.30

Groups B22 & G3 Average dissimilarity = 93.50

	Group B22					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	1.49	0.00	16.57	0.88	17.72	17.72
Anchoa mitchilli	0.88	0.69	13.40	0.76	14.33	32.06
Micropogonias undulatus	1.76	0.00	11.55	0.82	12.36	44.41
Lolliguncula brevis	0.00	0.80	8.66	0.78	9.26	53.67
Litopénaeus setiferus	0.83	0.00	6.94	0.71	7.42	61.09
Trichiurus lepturus	0.00	0.55	5.91	0.78	6.32	67.41
Stellifer lanceolatus	0.33	0.35	4.96	0.91	5.31	72.72

Groups B31 & G3 Average dissimilarity = 98.41

Group B31 Group G3

Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	3.12	0.00	23.28	1.65	23.66	23.66
Macrobrachium ohione	1.34	0.00	13.59	0.84	13.81	37.46
Anchoa mitchilli	0.61	0.69	12.05	0.64	12.25	49.71
Lolliguncula brevis	0.00	0.80	7.91	0.73	8.03	57.75
Trichiurus lepturus	0.00	0.55	5.40	0.73	5.48	63.23
Micropogonias undulatus	0.93	0.00	4.66	0.62	4.73	67.96
Stellifer lanceolatus	0.03	0.35	3.41	0.73	3.47	71.43

Groups B42 & G3 Average dissimilarity = 98.75

	Group B42					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Ictalurus furcatus	1.75	0.00	23.75	1.63	24.05	24.05
Macrobrachium ohione	1.01	0.00	17.08	0.93	17.29	41.34
Anchoa mitchilli	0.09	0.69	12.80	0.91	12.97	54.31
Lolliguncula brevis	0.00	0.80	10.50	0.93	10.63	64.94
Trichiurus lepturus	0.00	0.55	7.17	0.93	7.26	72.20

Groups G1D1 & G3 Average dissimilarity = 87.48

	Group G1D1					
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Anchoa mitchilli	1.20	0.69	30.47	0.65	34.82	34.82
Lolliguncula brevis	0.55	0.80	14.55	0.66	16.63	51.45
Trichiurus lepturus	0.35	0.55	9.92	0.66	11.33	62.79
Stellifer lanceolatus	0.80	0.35	9.33	1.07	10.67	73.45

Groups G1 & G3 Average dissimilarity = 88.63

	Group G1						
Species	Av.Abund	Av.Abund	Av.Diss			Cum.%	
Micropogonias undulatus	4.47	0.00	15.23	7.66	17.18	17.18	
Stellifer lanceolatus	4.37	0.35	13.83	4.76	15.60	32.78	
Cynoscion arenarius	2.99	0.00	9.67	8.71	10.91	43.69	
Lolliguncula brevis	3.25	0.80	8.56	2.05	9.66	53.36	
Anchoa mitchilli	2.92	0.69	7.37	1.46	8.31	61.67	

Selene setapinnis Ariopsis felis	1.89 0.80	0.00 0.00	4.94 3.63	0.87 0.86	5.58 6 4.09 7	7.25 1.34
<i>Groups G1U1 & G3</i> Average dissimilarity = 87.62						
Species Micropogonias undulatus Stellifer lanceolatus Anchoa mitchilli Lolliguncula brevis Cynoscion arenarius Selene setapinnis Callinectes sapidus	Group G1U1 Av.Abund 4.23 4.30 3.94 3.55 2.79 1.67 1.24	Av.Abund 0.00 0.35 0.69 0.80 0.00 0.00	13.12 12.98 9.71 8.49 8.46 4.59	14.36 1.78 2.98 2.58 6.12 0.87	14.81 11.08 9.69 9.66 5.24	14.97 29.78 40.86 50.55 60.21
<i>Groups G2 & G3</i> Average dissimilarity = 74.26						
Species Micropogonias undulatus Lolliguncula brevis Stellifer lanceolatus Chloroscombrus chrysurus Anchoa mitchilli	Group G2 Av.Abund 2.14 2.14 2.17 0.55 0.90	Group G3 Av.Abund 0.00 0.80 0.35 0.00 0.69	Av.Diss 16.10 11.97 11.91 8.43 6.94	Diss/SD 6.89 1.23 1.25 0.85 1.48	21.67 16.12 16.04 11.35	Cum.% 21.67 37.80 53.83 65.18 74.53

Table 76. Results of SIMPER analysis for beam trawl collection resemblance matrix between sample sites.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data1 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups Sample Site в01 в01

в01	в01			
в01	в01			
в10	в10			
в10	B10 B10			
в10	в10			
в10	в10			
в10	B10 B10			
в10	в10			
в10	в10			
в10	в10			
в10	B10 B10			
в10	в10			
в10	в10			
B01 B01 B10 B10 B10 B10 B10 B10 B10 B10	B10 B10			
в10	в10			
в10	в10			
в10	B10 B10			
в10	в10			
B10 B10 B10	в10			
в10	в10			
в10	в10			
B10 B10 B10 B10	B10 B10 B10			
в10	в10			
в10	В10 В10			
в10	в10			
в10	в10			
в10	B10 B22 B22 B22 B22 B22 B22 B22 B22			
B22	B22			
BZZ	BZZ			
BZZ	BZZ			
B10 B10 B10 B22 B22 B22 B22 B22 B22 B22 B22 B22 B2	B22 B22 B22 B22 B22 B22 B22 B22 B22 B22			
BZZ	BZZ			

в22	B22	
в22	в22	
P22		
В22 В22		
BZZ	BZZ	
в22	B22	
в22	в22	
B22 B22	в22	
B22	B22	
B22	B22 B22 B22 B22 B22 B22 B22 B22 B22 B22	
BZZ		
В22 В22	822	
BZZ	BZZ	
в22	B22	
В31 В31	в31	
в31	B31	
B31	B31	
DJ1		
B31 B31		
B31	B31 B31 B31 B31 B31	
B31	B31	
B31 B31	B31	
в31	в31	
в31	в31	
B31	B31 B31 B31 B31 B31 B31 B31	
B31	B31	
DJ1		
B31 B31 B31		
B2T	831	
B31	B31	
в31	B31	
в31	B31	
в31	B31	
B31 B31 B31	B31	
P31		
DJ1		
B31 B31 B31		
B2T	831	
В31	B31	
B31 B31	B31	
в31	в31	
в31	в31	
в42	B42	
B42	B31 B31 B31 B31 B31 B31 B31 B31 B31 B31	
B42 B42		
D42	B42	
B42	B42 B42	
в42	B42	
в42	B42	

в42	B42					
в42	B42					
B42	B42					
B42	B42					
B42	B42					
B42	B42					
B42	B42					
B42	B42					
в42 в42	В42 В42					
в42 B42	B42 B42					
в42 B42	в42 В42					
D42	D4Z					
Group E	701					
Average	e similarity: 11.25					
Specie		AV Abund	Av sim	sim/sn	Contrib%	Cum %
	ogonias undulatus	1.52	6.31	0.44		56.14
	ortia patronus	1.01	2.91	0.37	25.87	
BIEVUC	n cia pacionus	1.01	2.91	0.57	23.07	02.01
Group E	R10					
Average	e similarity: 8.79					
Specie) c	AV Abund	AV Sim	sim/sn	Contrib%	Cum %
	ogonias undulatus	1.04	3.36	0.34		38.22
	ortia patronus	0.93			20.67	
Litone	enaeus setiferus	0.66	1.82 1.57	0.24	17.85	
Licope	sideus sechielus	0.00	1.37	0.20	11.03	10.14
Group E	277					
Average	e similarity: 11.03					
Specie	25	Av Abund	Av cim	cim/cn	Contrib%	Cum %
	ectes sapidus	0.54	3.30	0.41	29.90	20 00
	jobius boleosoma	0.46	1.96	0.32	17.73	
	ogonias undulatus	0.40	1.35	0.32	12.21	
	onetes pugio	0.00	1.15	0.29	10.42	70 26
Faidell	ioneces pugro	0.45	1.17	0.29	10.42	10.20
Group B	731					
Average	e similarity: 8.58					

Species A Macrobrachium ohione Pimephales vigilax Anchoa mitchilli Mugil cephalus Palaemonetes pugio Litopenaeus setiferus Ctenogobius boleosoma	0.55 0.43 0.24 0.36 0.32 0.17	.Sim Sim/SC 1.40 0.26 1.04 0.25 0.94 0.16 0.81 0.19 0.80 0.19 0.79 0.12 0.76 0.22	5 16.3 12.1 5 10.9 9.3 9 9.3 9.2	% Cum.% 2 16.32 6 28.47 4 39.41 9 48.80 0 58.10 1 67.30 0 76.20		
<i>Group B42</i> Average similarity: 19.57						
Species Av Palaemonetes pugio Macrobrachium ohione	0.92 9	Sim Sim/SD .55 0.84 .05 0.47	48.80	6 Cum.% 48.80 79.74		
<i>Groups B01 & B10</i> Average dissimilarity = 89.14						
Species Micropogonias undulatus Brevoortia patronus Litopenaeus setiferus Palaemonetes pugio Anchoa mitchilli Callinectes sapidus	Group B01 Av.Abund 1.52 1.01 0.46 0.24 0.29 0.06	Group B10 Av.Abund 0.93 0.66 0.38 0.13 0.15	Av.Diss 21.25 15.91 11.00 6.67 6.03 3.97	Diss/SD 0.95 0.76 0.58 0.52 0.38 0.31	Contrib% 23.84 17.85 12.34 7.48 6.76 4.45	23.84 41.69 54.04 61.52
<i>Groups B01 & B22</i> Average dissimilarity = 91.39						
Species Micropogonias undulatus Brevoortia patronus Callinectes sapidus Litopenaeus setiferus Ctenogobius boleosoma Palaemonetes pugio	Group B01 Av.Abund 1.52 1.01 0.06 0.46 0.16 0.24		Av.Diss 17.41 12.24 9.08 8.36 6.84 6.78	Diss/SD 0.87 0.74 0.56 0.64 0.51 0.52	Contrib% 19.05 13.40 9.94 9.15 7.49 7.42	19.05 32.44 42.38 51.53

Anchoa mitchilli	0.29	0.15	6.61	0.36	7.23 73.67

Groups B10 & B22 Average dissimilarity = 90.12

Species Micropogonias undulatus Brevoortia patronus Litopenaeus setiferus Callinectes sapidus Palaemonetes pugio Ctenogobius boleosoma	Av.Abund 1.04 0.93 0.66 0.15 0.38 0.24	0.54 0.45 0.46	12.73 11.37 11.27 8.60 7.02 7.02	0.83 0.66 0.61 0.63 0.70 0.57	14.12 12.62 12.51 9.55 7.80 7.79	14.12 26.74 39.25 48.80 56.59 64.38
Mugil cephalus	0.24	0.46	7.02 5.56	0.57		64.38 70.54

Groups B01 & B31 Average dissimilarity = 93.15

Groups B10 & B31

Average dissimilarity = 92.75

Species Micropogonias undulatus Brevoortia patronus Litopenaeus setiferus Palaemonetes pugio	Av.Abund 1.04 0.93 0.66	0.17	$11.95 \\ 11.27 \\ 10.95$	0.76 0.63 0.53	12.88 12.15 11.80	12.88 25.03 36.84
Palaemonetes pugio Anchoa mitchilli	0.38	0.32	7.00	0.63	7.54	44.38
Macrobrachium ohione	0.03	0.55	6.05	0.55	6.52	57.79

Mugil cephalus	0.15	0.36	5.33	0.54	5.75 63.53
Pimephales vigilax	0.00	0.43	5.22	0.42	5.63 69.17
Ctenogobius boleosoma	0.24	0.39	5.02	0.66	5.41 74.58

Groups B22 & B31

Average dissimilarity = 90.82

	Group B22	Group B31				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Litopenaeus setiferus	0.50	0.17	8.56	0.50	9.42	9.42
Callinectes sapidus	0.54	0.23	8.23	0.67	9.06	18.49
Micropogonias undulatus	0.66	0.25	7.80	0.67	8.59	27.07
Brevoortia patronus	0.52	0.47	7.76	0.60	8.54	35.62
Ctenogobius boleosoma	0.46	0.39	7.70	0.64	8.48	44.10
Mugil cephalus	0.52	0.36	7.52	0.58	8.28	52.37
Palaemonetes pugio	0.45	0.32	7.04	0.62	7.75	60.12
Anchoa mitchilli	0.15	0.24	6.69	0.38	7.37	67.49
Macrobrachium ohione	0.13	0.55	6.24	0.59	6.87	74.37

Groups B01 & B42 Average dissimilarity = 94.61

	Group B01					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Palaemonetes pugio	0.24	0.92	14.02	0.81	14.82	14.82
Macrobrachium ohione	0.03	1.14	13.65	0.72	14.43	29.25
Micropogonias undulatus	1.52	0.38	13.32	0.89	14.08	43.33
Brevoortia patronus	1.01	0.24	8.96	0.66	9.47	52.79
Lythrurus fumeus	0.00	0.42	5.02	0.57	5.31	58.11
Litopenaeus setiferus	0.46	0.09	4.45	0.49	4.70	62.80
Anchoa mitchilli	0.29	0.19	4.39	0.51	4.64	67.45
Ctenogobius boleosoma	0.16	0.26	3.11	0.52	3.29	70.74

Groups B10 & B42 Average dissimilarity = 92.98

	Group B10					
Species	Av Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Macrobrachium ohione	0.03	1.14	13.06	0.74	14.05	14.05
Palaemonetes pugio	0.38	0.92	12.96	0.81	13.93	27.98

Micropogonias undulatus	1.04	0.38	10.07	0.75	10.83 38.81
Brevoortia patronus	0.93	0.24	8.61	0.56	9.26 48.07
Litopenaeus setiferus	0.66	0.09	6.94	0.52	7.46 55.53
Lythrurus fumeus	0.00	0.42	4.80	0.58	5.17 60.70
Ctenogobius boleosoma	0.24	0.26	3.75	0.61	4.03 64.73
Callinectes sapidus	0.15	0.23	3.30	0.53	3.55 68.28
Anchoa mitchilli	0.13	0.19	3.17	0.41	3.41 71.69

Groups B22 & B42 Average dissimilarity = 90.92

	Group B22	Group B42				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Macrobrachium ohione	0.13	1.14	12.58	0.75	13.83	13.83
Palaemonetes pugio	0.45	0.92	12.46	0.81	13.70	27.53
Micropogonias undulatus	0.66	0.38	6.85	0.63	7.53	35.06
Callinectes sapidus	0.54	0.23	6.23	0.78	6.85	41.92
Brevoortia patronus	0.52	0.24	5.67	0.49	6.24	48.15
Litopenaeus setiferus	0.50	0.09	5.42	0.50	5.96	54.11
Ctenogobius boleosoma	0.46	0.26	5.40	0.75	5.94	60.06
Lythrurus fumeus	0.00	0.42	4.56	0.58	5.01	65.07
Mugil cephalus	0.52	0.04	3.87	0.42	4.26	69.33
Anchoa mitchilli	0.15	0.19	3.53	0.39	3.88	73.21

Groups B31 & B42 Average dissimilarity = 89.05

Species Macrobrachium ohione Palaemonetes pugio Brevoortia patronus Micropogonias undulatus Pimephales vigilax Anchoa mitchilli Lythrurus fumeus Ctenogobius boleosoma Litopenaeus setiferus Mugil cephalus	Group B31 Av.Abund 0.55 0.32 0.47 0.25 0.43 0.24 0.03 0.39 0.17 0.36	Av.Abund 1.14 0.92 0.24 0.38 0.19 0.19 0.42 0.26 0.09	$14.17 \\ 12.87 \\ 5.49 \\ 5.14 \\ 5.08 \\ 4.89 \\ 4.89 \\ 4.76 \\ 3.69$	Diss/SD 0.85 0.45 0.51 0.68 0.68 0.68 0.62 0.68 0.41 0.49	5.77 5.70 5.50 5.49 5.34 4.14	$ \begin{array}{r} 15.92\\30.37\\36.53\\42.31\\48.01\\53.51\\58.99\\64.33\\68.47\end{array} $
Mugil cephalus	0.36	0.04	3.53	0.49	3.96	72.44

Table 77. Results of SIMPER analysis for otter trawl collection resemblance matrix between seasons- data from site B42 was excluded.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data2 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups Sample Season в01 Winter в10 Winter в22 Winter

в22	Winter			
в22	Winter			
в22	Winter			
B22	Winter			
B22 B22	Winter			
в22 В31				
B31	Winter			
В31	Winter			
B31	Winter			
В31	Winter			
B31 B31	Winter			
B31	Winter			
в31	Winter			
в31	Winter			
в31	Winter			
в01	Spring			
в10	Spring			
в22	Spring			
В22 В22	Spring			
в22	Spring			
в22	Spring			
в22	Spring			
B22	Spring			
B22	Spring			
в22	Spring			
B31	Spring			
B31	Spring			

в31	Spring
B31 B31 B31 B31	Sprina
в31	Spring
в01	Summer
B01	Summer
в01	Summer
в10	Summer
в10	Summer
в10 в10	Summer
в10	Summer
в10	Summer
в10	Summer
B10 B10 B10	Summer
в10	Summer
в10	Summer
в22	Summer
в31	Summer
в31	Summer
R31	Summer
в31	Summer
B31 B31 B31 B31	Summer
в31	Summer
B31	Summer
в31	Summer

Group Winter

Average similarity: 27.15

Species Micropogonias undulatus Litopenaeus setiferus Anchoa mitchilli Ictalurus furcatus	Av.Abund 3.36 1.27 1.33 1.02	Av.Sim 12.27 2.59 2.09 2.08	Sim/SD 1.21 0.57 0.41 0.27	9.55 7.71	Cum.% 45.20 54.75 62.46 70.13		
<i>Group Spring</i> Average similarity: 21.71							
Species Micropogonias undulatus Ictalurus furcatus Callinectes sapidus Macrobrachium ohione	Av.Abund 1.79 1.14 0.93 0.74	Av.Sim 5.36 5.32 2.95 2.94	Sim/SD 0.68 0.49 0.60 0.34	24.50 13.59	Cum.% 24.69 49.20 62.79 76.31		
<i>Group Summer</i> Average similarity: 32.06							
Species Litopenaeus setiferus Micropogonias undulatus Stellifer lanceolatus Cynoscion arenarius Ictalurus furcatus	Av.Abund 2.49 2.53 2.58 1.63 1.42	Av.Sim 7.05 6.15 5.16 2.90 2.82	Sim/SD 1.11 0.95 0.69 0.73 0.31	$19.17 \\ 16.10 \\ 9.03$	Cum.% 22.00 41.17 57.27 66.30 75.09		
<i>Groups Winter & Spring</i> Average dissimilarity = 79.12							
Species Micropogonias undulatus Ictalurus furcatus Anchoa mitchilli Stellifer lanceolatus Litopenaeus setiferus Macrobrachium ohione Callinectes sapidus Ariopsis felis	1 1 1 0 0 0		Av.Abu 1. 0. 1. 0. 0. 0. 0. 0.		13 1. 93 0. 90 0. 58 0. 35 0. 34 0. 14 1.	86 10.02 76 7.58 91 7.06 98 6.13 58 5.48 02 5.23	15.33 25.34 32.92 39.98 46.10 51.59 56.82

Cynoscion arenarius	0.51	0.48	2.76	0.80	3.49 64.65
Brevoortia patronus	0.33	0.37	2.15	0.66	2.72 67.36
Farfantepenaeus aztecus	0.06	0.66	2.08	0.49	2.63 69.99
Ictalurus punctatus	0.25	0.16	2.06	0.46	2.60 72.59

Groups Winter & Summer Average dissimilarity = 73.52

Species Micropogonias undulatus Stellifer lanceolatus Ictalurus furcatus Litopenaeus setiferus Anchoa mitchilli Cynoscion arenarius	Group Winter Av.Abund 3.36 1.01 1.02 1.27 1.33 0.51	Group Summer Av.Abund 2.53 2.58 1.42 2.49 1.39 1.63	9.01 7.38 7.07 6.47 5.82 4.27	1.09 1.17 0.75 1.29 0.89 1.16	9.62 8.80 7.92 5.81	12.25 22.29 31.90 40.70 48.62 54.43
Bagre marinus	0.32	1.28	3.45	1.14		59.12
Ariopsis felis	0.74	0.63	2.93	0.88		63.10
Callinectes sapidus	0.69	0.61	2.69	0.97		66.77
Macrobrachium ohione	0.10	0.57	2.58	0.46	3.51	70.28

Groups Spring & Summer Average dissimilarity = 78.46

	Group Spring	Group Summer				
Species	Av.Abund	Äv.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	1.79	2.53	8.75	1.20	11.15	11.15
Ictalurus furcatus	1.14	1.42	8.71	0.83	11.10	22.25
Stellifer lanceolatus	1.05	2.58	8.68	1.12	11.06	33.31
Litopenaeus setiferus	0.44	2.49	7.96	1.41	10.15	43.46
Macrobrachium ohione	0.74	0.57	5.41	0.61	6.89	50.35
Anchoa mitchilli	0.61	1.39	5.25	0.89	6.69	57.04
Cynoscion arenarius	0.48	1.63	5.15	1.08	6.56	63.59
Bagre marinus	0.18	1.28	3.96	1.08	5.04	68.64
Callinectes sapidus	0.93	0.61	3.75	0.87	4.79	73.42

Table 78. Results of SIMPER analysis for beam trawl collection resemblance matrix between seasons- data from site B42 was excluded.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data1 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups Sample Season в01 Winter в10 Winter в22 Winter

- 2 2				
в22	Winter			
в22	Winter			
В22 В22	Winter			
в22	Winter			
в31	Winter			
в31	Winter			
B31 B31	Winter			
в31	Winter			
B31 B31	Winter			
в31	Winter			
в31	Winter			
B31 B31	Winter			
в31	Winter			
в01	Spring			
в10	Spring			
в22	Spring			
В22 В22	Spring			
в22	Spring			
в22	Spring			
В22 В22	Spring			
в22	Spring			
в22	Spring			
в22	Spring			
в31	Spring			
в31	Spring			
	· · · · · · · · · · · · · · · · · · ·			

В31 В31	Spring
в31	Spring
D21	Spring
R31	Spring
B31	Spring
в31	Spring
в01	Summer
B01	Summer
в01	Summer
R10	Summer
в10	Summer
B10	Summer
в10	Summer
B10 B22 B22	Summer
в22	Summer
B22 B22 B22 B22 B22 B22 B22	Summer
в22	Summer
в22	Summer
в22	Summer
DZZ	Summer
в22	Summer
в31	Summer
в31	Summer
R31	Summer
в31	Summer
в31	Summer
B31 B31 B31 B31 B31 B31	Summer
в31	Summer
в31	Summer

D 2 1

Group Winter Average similarity: 20.63

Species Micropogonias undulatus Litopenaeus setiferus Ctenogobius boleosoma	Av.Abund 1.86 0.94 0.63	Av.Sim 9.78 4.21 2.06	0 68	20.39	Cum.% 47.39 67.78 77.75		
<i>Group Spring</i> Average similarity: 16.26							
Species Brevoortia patronus Palaemonetes pugio Anchoa mitchilli Micropogonias undulatus	1.45 0.48	6.20 3.04	0.47	18.69	Cum.% 38.16 56.85 67.62 76.68		
<i>Group Summer</i> Average similarity: 1.56							
Species A Anchoa mitchilli Callinectes sapidus Ctenogobius boleosoma Libellulidae spp.	v.Abund A 0.17 0.10 0.06 0.11	0.56 0.29	0.13 0.08 0.06	35.89 3	5.89 4.53 3.96		
<i>Groups Winter & Spring</i> Average dissimilarity = 87.21							
Species Micropogonias undulatus Brevoortia patronus Litopenaeus setiferus Palaemonetes pugio Mugil cephalus Ctenogobius boleosoma Callinectes sapidus Anchoa mitchilli			Av.Abu 0. 1. 0. 0. 0. 0. 0. 0.		45 1.05 94 0.88 83 0.68 90 0.73 47 0.56 23 0.80 09 0.60	14.84 11.27 6.87 6.27 6.00 5.84	17.71 32.55 43.82
<i>Groups Winter & Summer</i> Average dissimilarity = 96.71							

	Croup Winton	Croup Summor				
	Group Winter					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	1.86	0.03	23.10	1.01	23.88	23.88
Litopenaeus setiferus	0.94	0.12	16.32	0.65	16.88	40.76
Callinectes sapidus	0.45	0.10	7.72	0.55	7.98	48.74
Ctenogobius boleosoma	0.63	0.06	6.96	0.72	7.20	55.94
Brevoortia patronus	0.74	0.00	6.80	0.60	7.03	62.98
Palaemonetes pugio	0.39	0.17	4.75	0.54	4.91	67.89
Anchoa mitchilli	0.16	0.17	3.04	0.38	3.14	71.03

Groups Spring & Summer Average dissimilarity = 97.05

	Group Spring	Group Summer				
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Brevoortia patronus	1.45	0.00	19.33	0.75	19.92	19.92
Anchoa mitchilli	0.27	0.17	12.98	0.47	13.38	33.30
Palaemonetes pugio	0.48	0.17	11.23	0.61	11.58	44.87
Micropogonias undulatus	0.57	0.03	8.46	0.52	8.71	53.59
Mugil cephalus	0.45	0.00	7.40	0.49	7.63	61.22
Macrobrachium ohione	0.33	0.18	5.98	0.52	6.16	67.38
Callinectes sapidus	0.15	0.10	4.77	0.41	4.91	72.29

Table 79. Results of SIMPER analysis for otter trawl collection resemblance matrix between flow tiers- data from site B42 was excluded.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data2 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups Sample Hydrologic Condition-Flow Tier V2 Average-Subsistence в01 Average-Subsistence в01 в01 Average-Subsistence в01 Average-Subsistence Average-Subsistence в01 в10 Average-Subsistence Average-Subsistence в10 Average-Subsistence в10 Average-Subsistence в10 Average-Subsistence в10 Average-Subsistence в22 в22 Average-Subsistence в22 Average-Subsistence в22 Average-Subsistence B22 Average-Subsistence в31 Average-Subsistence в31 Average-Subsistence в31 Average-Subsistence в31 Average-Subsistence

B31 Average-Subsistence B01 Average-Base	-
BO1 Average-Base	
B01 Average-Base	
B10 Average-Base	
B10 Average-Base	
B10 Average-Base	
B22 Average-Base	
B22 Average-Base	
B22 Average-Base	
B31 Average-Base	
B31 Average-Base	
B31 Average-Base	
B01 Average-3ps	
B10 Average-3ps	
B10 Average-3ps	
B10 Average-3ps	
B10 Average-3ps B10 Average-3ps	
B22 Average-3ps	
B22 Average-3ps	
B22 Average-3ps	
B22 Average-3ps	
B22 Average-3ps	
B31 Averaĝe-3ps B31 Average-3ps	
B31 Average-3ps	
B31 Average-3ps B31 Average-3ps	
BO1 Wet-2ps	
BO1 Wet-2ps	
B10 Wet-2ps	
B10 Wet-2ps	
B10 Wet-2ps B22 Wet-2ps	
B22 Wet-2ps B22 Wet-2ps	
B22 Wet-2ps B31 Wet-2ps	
B31 Wet-2ps B01 Wet-Subsistence	
B01 Wet-Subsistence	

в01	Wet-Subsistence
в01	Wet-Subsistence
в01	Wet-Subsistence
в10	Wet-Subsistence
в22	Wet-Subsistence
в22	Wet-Subsistence Wet-Subsistence
в22	Wet-Subsistence
в22	Wet-Subsistence
в31	Wet-Subsistence Wet-Subsistence
в01	Wet-Base
в10	Wet-Base Wet-Base
в22	Wet-Base
в22	Wet-Base Wet-Base
в31	Wet-Base

Group Average-Subsistence

Average similarity: 33.42

Species Micropogonias undulatus Anchoa mitchilli Litopenaeus setiferus Leiostomus xanthurus	Av.Abund 3.51 2.28 1.75 0.97	Av.Sim 13.09 5.25 3.68 1.89	Sim/SD 1.77 0.65 0.73 0.63	Contrib% 39.17 15.71 11.01 5.65	Cum.% 39.17 54.88 65.89 71.55
<i>Group Average-Base</i> Average similarity: 24.06					
Species Micropogonias undulatus Callinectes sapidus Ictalurus furcatus Litopenaeus setiferus	Av.Abund 2.64 0.89 1.25 1.23	Av.Sim 9.90 3.47 2.97 2.65	Sim/SD 1.02 0.91 0.28 0.64	Contrib% 41.17 14.43 12.35 11.01	Cum.% 41.17 55.60 67.94 78.96
<i>Group Average-3ps</i> Average similarity: 20.83					
Species Ictalurus furcatus Micropogonias undulatus Macrobrachium ohione Stellifer lanceolatus	Av.Abund 1.32 1.30 0.55 1.17	Av.Sim 5.86 5.05 2.75 1.72	Sim/SD 0.40 0.61 0.43 0.28	Contrib% 28.13 24.22 13.22 8.26	Cum.% 28.13 52.35 65.56 73.83
<i>Group Wet-2ps</i> Average similarity: 32.27					
Species Micropogonias undulatus Ictalurus furcatus Stellifer lanceolatus Litopenaeus setiferus	Av.Abund 3.07 1.73 2.86 2.06	Av.Sim 7.63 5.49 4.94 4.53	Sim/SD 1.01 0.46 0.66 0.71	Contrib% 23.66 17.03 15.32 14.04	Cum.% 23.66 40.69 56.01 70.05
<i>Group Wet-Subsistence</i> Average similarity: 28.94					
Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%

Micropogonias undulatus	3.38	8.03	0.90	27.75 27.75
Litopenaeus setiferus	2.32	5.37	1.02	18.57 46.32
Anchoa mitchilli	2.02	3.68	0.72	12.71 59.02
Stellifer lanceolatus	1.87	3.01	0.60	10.41 69.44
Cynoscion arenarius	1.43	2.80	0.82	9.67 79.11

Group Wet-Base Average similarity: 23.18

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Micropogonias undulatus	2.13	5.38	0.74	23.21	23.21
Ictalurus furcatus	1.15	5.11	0.51	22.06	45.27
Callinectes sapidus	1.07	2.80	0.64	12.10	57.37
Stellifer lanceolatus	1.81	2.61	0.44	11.24	68.61
Macrobrachium ohione	0.87	2.32	0.26	9.99	78.60

Groups Average-Subsistence & Average-Base Average dissimilarity = 73.84

Species	•	Average-Subsistence Av.Abund	Group Average-Base Av.Abund	Av.Diss	Diss/SD	Contrib%
Micropogonias undulatus	Cum.%	3.51	2.64	9.16	1.19	12.41
Anchoa mitchilli	12.41	2.28	0.41	7.91	0.93	10.71
Ictalurus furcatus	23.12	0.95	1.25	6.53	0.69	8.84
Litopenaeus setiferus	31.96	1.75	1.23	5.46	1.20	7.40
Stellifer lanceolatus	39.36	1.05	1.12	4.98	0.94	6.74
Cynoscion arenarius	46.10	0.87	0.98	3.86	1.05	5.23
Ariopsis felis	51.33	0.91	0.31	3.13	0.89	4.24
Leiostomus xanthurus	55.58	0.97	0.12	3.10	0.90	4.20
Callinectes sapidus	59.77	0.72	0.89	3.09	1.10	4.19
Bagre marinus	63.96	0.54	0.50	2.36	0.88	3.20

Bairdiella chrysoura	67.17 70.23	0.43	0.37	2.27	0.66	3.07
<i>Groups Average-Subsistence &</i> Average dissimilarity = 80.16	Average-3ps					
Species	Group Aver Cum.%	rage-Subsistence Av.Abund	Group Average-3ps Av.Abund	Av.Diss	Diss/SD	Contrib%
Micropogonias undulatus	14.00	3.51	1.30	11.22	1.28	14.00
Anchoa mitchilli	25.22	2.28	0.41	9.00	0.94	11.23
Cctalurus furcatus		0.95	1.32	7.69	0.75	9.60
itopenaeus setiferus	34.82	1.75	0.62	6.30	1.11	7.85
Stellifer lanceolatus	42.68	1.05	1.17	5.93	0.90	7.40
Ariopsis felis	50.08	0.91	0.44	3.67	0.95	4.58
eiostomus xanthurus.	54.66	0.97	0.09	3.56	0.92	4.44
Callinectes sapidus	59.10	0.72	0.36	3.20	0.87	3.99
ynoscion arenarius	63.09	0.87	0.29	3.07	1.06	3.83
acrobrachium ohione	66.92 70.37	0.00	0.55	2.77	0.44	3.45

Groups Average-Base & Average-3ps Average dissimilarity = 77.53

	Group Average-Base	Group Average-3ps				
Species	Av.Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	2.64	1.30	11.36	1.33	14.66	14.66
Ictalurus furcatus	1.25	1.32	10.68	0.87	13.77	28.43
Stellifer lanceolatus	1.12	1.17	7.66	1.02	9.89	38.31
Litopenaeus setiferus	1.23	0.62	5.61	1.16	7.23	45.54
Cynoscion arenarius	0.98	0.29	4.05	0.83	5.23	50.77

Callinectes sapidus	0.89	0.36	3.96	1.25	5.11 55.88
Macrobrachium ohione	0.00	0.55	3.41	0.69	4.40 60.28
Ictalurus punctatus	0.34	0.20	3.22	0.56	4.15 64.43
Anchoa mitchilli	0.41	0.41	2.90	0.61	3.73 68.16
Bairdiella chrysoura	0.37	0.27	2.84	0.61	3.66 71.82

Groups Average-Subsistence & Wet-2ps Average dissimilarity = 71.51

	Group Average-Subsistence	Group Wet-2ps				
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.51	3.07	7.32	1.06	10.24	10.24
Ictalurus furcatus	0.95	1.73	7.23	0.80	10.12	20.36
Stellifer lanceolatus	1.05	2.86	7.01	1.23	9.80	30.16
Anchoa mitchilli	2.28	1.09	6.81	0.99	9.52	39.68
Litopenaeus setiferus	1.75	2.06	5.43	1.20	7.59	47.27
Macrobrachium ohione	0.00	1.20	5.04	0.63	7.05	54.32
Cynoscion arenarius	0.87	1.62	4.09	1.24	5.72	60.04
Bagre marinus	0.54	1.18	3.12	1.11	4.37	64.41
Ariopsis felis	0.91	0.49	2.90	0.92	4.05	68.46
Leiostomus xanthurus	0.97	0.09	2.64	0.87	3.69	72.15

Groups Average-Base & Wet-2ps Average dissimilarity = 73.45

	Group Average-Base	Group Wet-2ps				
Species	Av.Abund	Av. Abund	Av.Diss	Diss/SD	Contrib% Cum.%	
Micropogonias undulatus	2.64	3.07	8.97	1.37	12.21 12.21	
Stellifer lanceolatus	1.12	2.86	8.40	1.33	11.43 23.64	
Ictalurus furcatus	1.25	1.73	8.38	0.95	11.41 35.06	
Macrobrachium ohione	0.00	1.20	6.39	0.68	8.70 43.75	
Litopenaeus setiferus	1.23	2.06	5.95	1.30	8.10 51.85	
Cynoscion arenarius	0.98	1.62	5.13	1.14	6.99 58.84	
Bagre marinus	0.50	1.18	3.54	1.05	4.83 63.67	
Anchoa mitchilli	0.41	1.09	3.49	0.72	4.75 68.42	
Callinectes sapidus	0.89	0.55	2.95	1.28	4.02 72.44	
-						
Groups Average-3ps & Wet-2p.	5					
Average dissimilarity = 75.02						

	Croup Average_3pc	Croup Wot-2nc				
	Group Average-3ps	Group wet-zps		. ,		
Species	Av.Abund	Av.Abund	Av.Diss	D1SS/SD	Contrib%	Cum.%
Ictalurus furcatus	1.32	1.73	9.91	0.92	13.21	13.21
Micropogonias undulatus	1.30	3.07	9.55	1.42	12.73	25.95
Stellifer lanceolatus	1.17	2.86	9.38	1.18	12.50	38.45
Macrobrachium ohione	0.55	1.20	7.54	0.83	10.05	48.49
Litopenaeus setiferus	0.62	2.06	6.85	1.27	9.14	57.63
Cynoscion arenarius	0.29	1.62	5.01	1.14	6.68	64.30
Anchoa mitchilli	0.41	1.09	4.17	0.80	5.55	69.86
Bagre marinus	0.25	1.18	3.96	1.05	5.28	75.13

Groups Average-Subsistence & Wet-Subsistence Average dissimilarity = 69.12

	Group A	verage-Subsistence	Group Wet-Subsistence			
Species	C	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%
Micropogonias undulatus	Cum.%	3.51	3.38	7.83	1.01	11.33
Anchoa mitchilli	11.33	2.28	2.02	6.98	1.05	10.10
Litopenaeus setiferus	21.43	1.75	2.32	5.57	1.05	8.06
Stellifer lanceolatus	29.49	1.05	1.87	4.95	1.11	7.17
Ictalurus furcatus	36.66	0.95	1.10	4.73	0.72	6.84
Cynoscion arenarius	43.50	0.87	1.43	3.62	0.92	5.24
Ariopsis felis	48.74	0.91	0.79	2.94	0.97	4.25
Leiostomus xanthurus	53.00	0.97	0.44	2.69	0.92	3.90
Bagre marinus	56.89	0.54	0.89	2.59	0.96	3.74
-	60.63					
Callinectes sapidus	64.22	0.72	0.70	2.48	0.98	3.58
Farfantepenaeus aztecus	67.49	0.19	0.88	2.26	0.56	3.27
Bairdiella chrysoura	70.44	0.43	0.68	2.04	0.87	2.96

Groups Average-Base & Wet-Subsistence Average dissimilarity = 75.19

	Group Average-Base	Group Wet-Subsistence			
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib% Cum.%
Micropogonias undulatus	2.64	3.38	9.78	1.15	13.01 13.01
Ictalurus furcatus	1.25	1.10	6.59	0.75	8.77 21.78
Litopenaeus setiferus	1.23	2.32	6.15	1.24	8.18 29.96
Anchoa mitchilli	0.41	2.02	6.10	1.04	8.11 38.07
Stellifer lanceolatus	1.12	1.87	6.04	1.19	8.03 46.10
Cynoscion arenarius	0.98	1.43	4.81	1.10	6.40 52.50
Callinectes sapidus	0.89	0.70	2.96	1.19	3.94 56.44
Bagre marinus	0.50	0.89	2.69	0.90	3.58 60.03
Farfantepenaeus aztecus	0.24	0.88	2.64	0.57	3.51 63.54
Ariopsis felis	0.31	0.79	2.44	0.85	3.24 66.78
Bairdiella chrysoura	0.37	0.68	2.41	0.73	3.20 69.98
Macrobrachium spp.	0.23	0.48	2.32	0.43	3.08 73.06

Groups Average-3ps & Wet-Subsistence Average dissimilarity = 80.22

	Group Average-3ps	Group Wet-Subsistence			
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib% Cum.%
Micropogonias undulatus	1.30	3.38	10.86	1.10	13.53 13.53
Ictalurus furcatus	1.32	1.10	7.69	0.80	9.59 23.12
Litopenaeus setiferus	0.62	2.32	7.48	1.27	9.32 32.44
Anchoa mitchilli	0.41	2.02	6.84	1.06	8.52 40.96
Stellifer lanceolatus	1.17	1.87	6.83	1.05	8.52 49.47
Cynoscion arenarius	0.29	1.43	4.66	0.93	5.81 55.28
Macrobrachium ohione	0.55	0.29	3.19	0.65	3.97 59.26
Ariopsis felis	0.44	0.79	2.89	0.91	3.60 62.86
Callinectes sapidus	0.36	0.70	2.79	0.91	3.48 66.34
Bagre marinus	0.25	0.89	2.73	0.82	3.41 69.75
Farfantepenaeus aztecus	0.07	0.88	2.65	0.52	3.31 73.06

Groups Wet-2ps & Wet-Subsistence Average dissimilarity = 70.18

Group Wet-2ps Group Wet-Subsistence

Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	3.07	3.38	7.86	1.05	11.20	11.20
Ictalurus furcatus	1.73	1.10	6.90	0.83	9.83	21.03
Stellifer lanceolatus	2.86	1.87	6.86	1.22	9.77	30.81
Anchoa mitchilli	1.09	2.02	5.56	1.11	7.93	38.74
Litopenaeus setiferus	2.06	2.32	5.53	1.15	7.89	46.62
Macrobrachium ohione	1.20	0.29	4.98	0.65	7.09	53.71
Cynoscion arenarius	1.62	1.43	4.42	1.19	6.30	60.01
Bagre marinus	1.18	0.89	3.32	1.09	4.72	64.74
Ariopsis felis	0.49	0.79	2.28	0.86	3.25	67.98
Brevoortia patronus	0.79	0.48	2.22	0.87	3.16	71.14

Groups Average-Subsistence & Wet-Base Average dissimilarity = 77.30

	Group Average-Subsistence	Group Wet-Base			
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib% Cum.%
Micropogonias undulatus	3.51	2.13	10.11	1.23	13.08 13.08
Anchoa mitchilli	2.28	0.46	7.93	0.92	10.26 23.34
Ictalurus furcatus	0.95	1.15	6.58	0.77	8.51 31.85
Stellifer lanceolatus	1.05	1.81	6.16	1.02	7.97 39.82
Litopenaeus setiferus	1.75	1.00	5.75	1.16	7.43 47.25
Callinectes sapidus	0.72	1.07	3.85	0.92	4.97 52.23
Macrobrachium ohione	0.00	0.87	3.81	0.49	4.93 57.15
Ariopsis felis	0.91	0.58	3.61	0.91	4.67 61.82
Cynoscion arenarius	0.87	0.65	3.37	1.05	4.36 66.18
Leiostomus xanthurus	0.97	0.06	3.18	0.88	4.12 70.30

Groups Average-Base & Wet-Base Average dissimilarity = 76.55

	Group Average-Base					
Species	Av. Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	2.64	2.13	10.83	1.30	14.14	14.14
Ictalurus furcatus	1.25	1.15	9.00	0.92	11.76	25.90
Stellifer lanceolatus	1.12	1.81	7.67	1.12	10.01	35.92
Litopenaeus setiferus	1.23	1.00	5.34	1.17	6.98	42.89
Macrobrachium ohione	0.00	0.87	4.86	0.54	6.35	49.24
Callinectes sapidus	0.89	1.07	4.50	1.08	5.87	55.11
Cynoscion arenarius	0.98	0.65	4.29	0.87	5.61	60.72
Bagre marinus	0.50	0.57	2.81	0.81	3.68	64.40

Ariopsis felis Bairdiella chrysoura	0.31 0.37	0.58 0.36		0.71 0.60	3.68 68.07 3.45 71.53
<i>Groups Average-3ps & Wet-Ba</i> Average dissimilarity = 77.92	se				
Species Ictalurus furcatus Micropogonias undulatus Stellifer lanceolatus Macrobrachium ohione Litopenaeus setiferus Callinectes sapidus Ariopsis felis Anchoa mitchilli	Group Average-3ps Grou Av.Abund 1.32 1.30 1.17 0.55 0.62 0.36 0.44 0.41		Av.Diss D 10.91 10.29 8.78 7.49 5.38 5.16 3.54 3.31	iss/SD Con 0.97 1.17 0.99 0.78 0.91 0.97 0.78 0.68	ntrib% Cum.% 14.00 14.00 13.21 27.21 11.27 38.48 9.62 48.09 6.91 55.00 6.62 61.62 4.55 66.16 4.25 70.42
<i>Groups Wet-2ps & Wet-Base</i> Average dissimilarity = 71.72					
Species Micropogonias undulatus Stellifer lanceolatus Ictalurus furcatus Macrobrachium ohione Litopenaeus setiferus Cynoscion arenarius Bagre marinus Anchoa mitchilli	3.07 2.86 1.73 1.20 2.06 1.62 1.18 1.09	.Abund Av.D 2.13 9 1.81 8 1.15 8 0.87 6 1.00 6 0.65 4 0.57 3	.021781420.	34 12.1 21 12.2 94 11.2 79 9.2 24 8.2 14 6.8 06 5.2	0% Cum.% 58 12.58 25 24.82 74 36.57 75 46.32 70 55.01 34 61.86 29 67.15 15 72.30
<i>Groups Wet-Subsistence & We</i> Average dissimilarity = 77.18	t-Base				
Species Micropogonias undulatus Stellifer lanceolatus Litopenaeus setiferus Ictalurus furcatus	Group Wet-Subsistence Av.Abund 3.38 1.87 2.32 1.10	Av.Abi 2 1 1	ase und Av.Dis .13 9.9 .81 6.7 .00 6.0 .15 6.9	95 1.08 74 1.14 67 1.19	8.73 21.62 8.64 30.26

Anchoa mitchilli	2.02	0.46	6.06	0.99	7.85 46.62
Cynoscion arenarius	1.43	0.65	4.61	0.98	5.97 52.59
Macrobrachium ohione	0.29	0.87	4.09	0.55	5.30 57.90
Callinectes sapidus	0.70	1.07	3.63	0.93	4.70 62.60
Farfantepenaeus aztecus	0.88	0.39	3.08	0.61	4.00 66.59
	0.89	0.57	3.00	0.90	3.89 70.48
Bagre marinus	0.89	0.57	3.00	0.90	3.89 70.48

Table 80. Results of SIMPER analysis for beam trawl collection resemblance matrix between flow tiers- data from site B42 was excluded.

SIMPER

Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Data1 Data type: Other Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray-Curtis similarity Cut off for low contributions: 70.00%

Factor Groups

	<i>cups</i>		
Sample		Condition-Flow	Tier
B01	Avg-Sub		
в01	Avg-Sub		
в10	Avg-Sub		
в22	Avg-Sub		
в31	Avg-Sub		

в31	Avg-Sub
в01	Avg-Base
B01	Avg-Base
B01	Avg-Base
B10	Avg-Base
в10	Avg-Base
B10	Avg-Base
B22	Avg-Base
B22	Avg-Base
B22	Avg-Base
B31	Avg-Base
B31	Avg-Base
B31	Avg-Base
B01	Avg-3ps
в01	Avg-3ps
в01	Avg-3ps
в01	Avg-3ps
в10	Avg-3ps
в22	Avg-3ps
в31	Avg-3ps
в01	Wet-2ps
в01	Wet-2ps
в10	Wet-2ps
в10	Wet-2ps
B22	Wet-2ps
B22	Wet-2ps
в31	Wet-2ps
в31	Wet-2ps
в01	Wet-Sub
в10	Wet-Sub

в10	Wet-Sub				
в10	Wet-Sub				
в10	Wet-Sub				
в10	Wet-Sub				
в22	Wet-Sub				
в22	Wet-Sub				
в22	Wet-Sub				
в22	Wet-Sub				
в22	Wet-Sub				
в31	Wet-Sub				
в31	Wet-Sub				
в31	Wet-Sub				
в31	Wet-Sub				
в31	Wet-Sub				
в01	Wet-Base				
в01	Wet-Base				
в01	Wet-Base				
в01	Wet-Base				
в01	Wet-Base				
в01	Wet-Base				
в10	Wet-Base				
в10	Wet-Base				
в10	Wet-Base				
в10	Wet-Base				
в10	Wet-Base				
в10	Wet-Base				
в22	Wet-Base				
B22	Wet-Base				
B22	Wet-Base				
B22	Wet-Base				
B22	Wet-Base				
B22	Wet-Base				
B31	Wet-Base				
B31	Wet-Base				
B31	Wet-Base				
B31	Wet-Base				
в31	Wet-Base				

B31 Wet-Base B31 Wet-Base

Group Avg-Sub Average similarity: 16.36

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Litopenaeus setiferus Micropogonias undulatus Callinectes sapidus	1.12 1.06 0.69	5.40	0.47 0.41 0.42	33.01	33.01 61.96
<i>Group Avg-Base</i> Average similarity: 18.19					
Species Micropogonias undulatus Ctenogobius boleosoma Brevoortia patronus	Av.Abund 2.21 1.12 1.28	Av.Sim 6.63 6.07 2.98	Sim/SD 0.65 0.81 0.43	Contrib% 36.42 33.37 16.39	36.42 69.79
<i>Group Avg-3ps</i> Average similarity: 13.27					
Species Brevoortia patronus Micropogonias undulatus Ctenogobius boleosoma Palaemonetes pugio	Av.Abund 1.18 0.90 0.49 0.53	Av.Sim 3.33 3.28 2.18 1.87	Sim/SD 0.42 0.37 0.32 0.33	24.75 16.43	Cum.% 25.06 49.81 66.25 80.30
<i>Group Wet-2ps</i> Average similarity: 13.08					
Species Av Brevoortia patronus Macrobrachium ohione Libellulidae spp. Anchoa mitchilli	1.42 1.06 0.43	4.46 (2.75 (1.56 (m/SD Cor 0.33 0.32 0.34 0.32	20.99 55 11.96 67	.12 .11
<i>Group Wet-Sub</i> Average similarity: 5.24					
Species Litopenaeus setiferus Micropogonias undulatus	Av.Abund 0.52 0.56	Av.Sim 2.43 1.48	Sim/SD 0.23 0.18	Contrib% 46.36 28.29	
Group Wet-Base					

Average similarity: 7.92

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Mugil cephalus	0.62	1.81	0.27	22.83	22.83
Palaemonetes pugio	0.37	1.69	0.26	21.31	44.14
Brevoortia patronus	0.68	1.46	0.20	18.48	62.62
Anchoa mitchilli	0.18	0.86	0.12	10.88	73.50

Groups Avg-Sub & Avg-Base Average dissimilarity = 87.25

	Group Avg-Sub	Group Avg-Base				
Species	Av. Abund	Av. Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	1.06	2.21	18.19	1.00	20.84	20.84
Litopenaeus setiferus	1.12	0.18	12.17	0.63	13.95	34.79
Ctenogobius boleosoma	0.46	1.12	8.58	1.08	9.84	44.63
Callinectes sapidus	0.69	0.15	8.46	0.50	9.70	54.33
Brevoortia patronus	0.36	1.28	8.27	0.87	9.48	63.80
Palaemonetes pugio	0.43	0.40	4.63	0.63	5.30	69.10
Mugil cephalus	0.14	0.58	4.10	0.50	4.70	73.81

Groups Avg-Sub & Avg-3ps Average dissimilarity = 88.21

Species Micropogonias undulatus Litopenaeus setiferus Brevoortia patronus Callinectes sapidus Palaemonetes pugio Ctenogobius boleosoma Anchoa mitchilli <i>Groups Avg-Base & Avg-3ps</i> Average dissimilarity = 84.45	Group Avg-Sub Av.Abund 1.06 1.12 0.36 0.69 0.43 0.43 0.46 0.03	Group Avg-3ps Av.Abund 0.90 0.29 1.18 0.11 0.53 0.49 0.32	Av.Diss 14.74 12.20 9.48 8.35 7.24 7.10 5.21	Diss/SD 0.83 0.74 0.85 0.61 0.69 0.64 0.38	Contrib% Cum 16.71 16. 13.83 30. 10.75 41. 9.47 50. 8.20 58. 8.05 67. 5.91 72.	71 54 29 76 96 01
Species Micropogonias undulatus	Group Avg-Base Av.Abund 2.21	Group Avg-3ps Av.Abund 0.90	Av.Diss 18.17		Contrib% Cu 21.51 21	m.% .51

Brevoortia patronus	1.28	1.18	12.26	1.02	14.52 36.03	
Ctenogobius boleosoma	1.12	0.49	11.21	0.69	13.27 49.30	
Anchoa mitchilli	0.37	0.32	6.95	0.40	8.23 57.53	
Palaemonetes pugio	0.40	0.53	6.47	0.62	7.67 65.20	
Pimephales vigilax	0.12	0.40	4.10	0.48	4.85 70.05	
_						

Groups Avg-Sub & Wet-2ps Average dissimilarity = 94.45

Average dissimilatily = 94.45

Species Brevoortia patronus Litopenaeus setiferus Micropogonias undulatus Macrobrachium ohione Callinectes sapidus Libellulidae spp.	Group Avg-Sub Av.Abund 0.36 1.12 1.06 0.00 0.69 0.00	Av.Abund 1.42 0.17 0.35 1.06 0.00	12.90 11.04 10.62 8.78 7.09	0.77 0.69 0.72 0.66 0.55	11.25 9.29 7.51	13.66 25.34 36.59 45.88 53.39
Callinectes sapidus Libellulidae spp. Palaemonetes pugio Anchoa mitchilli Ictalurus furcatus	0.69 0.00 0.43 0.03 0.05	0.00 0.43 0.35 0.48 0.50	7.09 5.61 5.05 4.17 4.07	0.55 0.43 0.75 0.59 0.59	5.94 5.35 4.41	53.39 59.34 64.68 69.09 73.40

Groups Avg-Base & Wet-2ps Average dissimilarity = 90.65

Species Brevoortia patronus Micropogonias undulatus Macrobrachium ohione Ctenogobius boleosoma Libellulidae spp. Ictalurus furcatus	Group Avg-Base Av.Abund 2.21 0.06 1.12 0.00 0.21 0.37	Group Wet-2ps Av.Abund 1.42 0.35 1.06 0.00 0.43 0.50 0.48	14.87 13.51 9.01 7.97 7.56 4.92	0.83 1.07 0.64 1.03 0.37 0.71	14.91 9.94 8.79 8.33 5.42	16.40 31.31 41.25 50.05 58.38 63.80
Anchoa mitchilli Pimephales vigilax	0.21 0.37 0.12	0.50 0.48 0.35	4.92 4.91 4.31	0.71 0.67 0.55	5.42	63.80 69.22 73.97
Groups Avg-3ps & Wet-2ps						

Average dissimilarity = 87.49

	Group Avg-3ps	Group Wet-2ps				
Species	Av . Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%

Brevoortia patronus	1.18	1.42	16.12	0.93	18.43 18.43	
Macrobrachium ohione	0.28	1.06	10.13	0.75	11.58 30.01	
Micropogonias undulatus	0.90	0.35	9.56	0.65	10.93 40.94	
Anchoa mitchilli	0.32	0.48	7.69	0.53	8.79 49.73	
Palaemonetes pugio	0.53	0.35	6.43	0.71	7.35 57.08	
Pimephales viģilāx	0.40	0.35	6.19	0.67	7.07 64.15	
Libellulidae spp.	0.00	0.43	6.14	0.43	7.02 71.17	

Groups Avg-Sub & Wet-Sub Average dissimilarity = 90.52

Species Litopenaeus setiferus Micropogonias undulatus Callinectes sapidus Brevoortia patronus	Group Avg-Sub Av.Abund 1.12 1.06 0.69 0.36	Av.Abund 0.52 0.56 0.17 0.21	19.75 18.32 12.19 5.07	0.83 0.85 0.64 0.55	20.24 13.47 5.60	21.82 42.05 55.53 61.12
		• • = •			5.60 5.49	

Groups Avg-Base & Wet-Sub Average dissimilarity = 94.15

Grou Species Micropogonias undulatus Ctenogobius boleosoma Brevoortia patronus Litopenaeus setiferus Mugil cephalus Anchoa mitchilli Callinectes sapidus	p Avg-Base Av.Abund 2.21 1.12 1.28 0.18 0.58 0.37 0.15	Group Wet-Sub Av.Abund 0.56 0.00 0.21 0.52 0.03 0.07 0.17	Av.Diss 21.57 11.52 10.93 9.47 5.62 4.90 4.07	Diss/SD 1.16 1.18 0.93 0.44 0.52 0.34 0.42	22.91 12.24 11.60 10.06 5.97 5.20	22.91
--	--	---	--	---	--	-------

Groups Avg-3ps & Wet-Sub Average dissimilarity = 93.59

	Group Avg-3ps	Group Wet-Sub					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%	
Micropogonias undulatus	0.90	0.56	17.07	0.75	18.24	18.24	
Brevoortia patronus	1.18	0.21	12.45	0.88	13.31	31.55	

Anchoa mitchilli	0.32	0.07	9.96	0.46	10.64 42.19
Litopenaeus setiferus	0.29	0.52	9.26	0.52	9.90 52.09
Ctenogobius boleosoma	0.49	0.00	9.02	0.50	9.63 61.72
Palaemonetes pugio	0.53	0.05	8.04	0.61	8.60 70.32

Groups Wet-2ps & Wet-Sub Average dissimilarity = 95.95

	Group Wet-2ps	Group Wet-Sub				
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Brevoortia patronus	1.42	0.21	17.56	0.80	18.30	18.30
Macrobrachium ohione	1.06	0.00	12.02	0.71	12.52	30.83
Libellulidae spp.	0.43	0.00	10.21	0.47	10.64	41.47
Micropogonias undulatus	0.35	0.56	8.63	0.63	8.99	50.46
Litopenaeus setiferus	0.17	0.52	8.16	0.48	8.50	58.96
Anchoa mitchilli	0.48	0.07	7.03	0.56	7.33	66.29
Pimephales vigilax	0.35	0.03	6.26	0.51	6.52	72.81

Groups Avg-Sub & Wet-Base Average dissimilarity = 92.40

	Group Avg-Sub	Group Wet-Base				
Species	Av. Abund	Av Abund	Av.Diss	Diss/SD	Contrib%	Cum.%
Micropogonias undulatus	1.06	0.44	14.53	0.78	15.73	15.73
Litopenaeus setiferus	1.12	0.16	14.24	0.77	15.42	31.14
Callinectes sapidus	0.69	0.14	9.62	0.63	10.41	41.56
Brevoortia patronus	0.36	0.68	9.30	0.54	10.07	51.62
Palaemonetes pugio	0.43	0.37	7.49	0.62	8.10	59.73
Mugil cephalus	0.14	0.62	6.46	0.56	6.99	66.72
Ctenogobius boleosoma	0.46	0.03	4.23	0.72	4.58	71.30

Groups Avg-Base & Wet-Base Average dissimilarity = 91.97

	Group Avg-Base	Group Wet-Base					
Species	Av.Abund	Av.Abund	Av.Diss	Diss/SD	Contrib%	Cum.%	
Micropogonias undulatus	2.21	0.44	17.33	1.06	18.85	18.85	
Brevoortia patronus	1.28	0.68	14.27	0.71	15.52	34.36	
Ctenogobius boleosoma	1.12	0.03	9.88	1.10	10.74	45.10	
Mugil cephalus	0.58	0.62	9.30	0.67	10.11	55.21	

Palaemonetes pugio Anchoa mitchilli	0.40 0.37	0.37 0.18	7.26 7.02			63.10 70.74
<i>Groups Avg-3ps & Wet-Base</i> Average dissimilarity = 90.10						
Species Brevoortia patronus Micropogonias undulatus Anchoa mitchilli Palaemonetes pugio Ctenogobius boleosoma Mugil cephalus Macrobrachium ohione	Group Avg-3ps G Av.Abund 1.18 0.90 0.32 0.53 0.49 0.04 0.28	Group Wet-Base Av.Abund 0.68 0.44 0.18 0.37 0.03 0.62 0.19	Av.Diss 15.11 13.27 9.81 9.56 7.37 6.56 4.55	Diss/SD 0.81 0.71 0.47 0.67 0.52 0.54 0.59	$ \begin{array}{r} 16.77 \\ 14.73 \\ 10.89 \\ 10.61 \\ 8.18 \\ 7.28 \end{array} $	16.77 31.50 42.38
<i>Groups Wet-2ps & Wet-Base</i> Average dissimilarity = 90.97						
Species Brevoortia patronus Macrobrachium ohione Anchoa mitchilli Libellulidae spp. Palaemonetes pugio Micropogonias undulatus Mugil cephalus	Group Wet-2ps G Av.Abund 1.42 1.06 0.48 0.43 0.35 0.35 0.00	Group Wet-Base Av.Abund 0.68 0.19 0.18 0.09 0.37 0.44 0.62	AV.Diss 18.51 11.49 7.89 7.86 6.70 6.25 5.85	Diss/SD 0.82 0.78 0.49 0.47 0.60 0.59 0.51	20.35 12.63 8.67 8.65 7.36 6.87	20.35
<i>Groups Wet-Sub & Wet-Base</i> Average dissimilarity = 94.77						
Species Brevoortia patronus Micropogonias undulatus Litopenaeus setiferus Anchoa mitchilli Mugil cephalus Palaemonetes pugio	Group Wet-Sub G Av.Abund 0.21 0.56 0.52 0.07 0.03 0.05	Group Wet-Base Av.Abund 0.68 0.44 0.16 0.18 0.62 0.37	Av.Diss 13.51 12.83 11.66 9.96 9.32 8.90	Diss/SD 0.56 0.65 0.56 0.40 0.60 0.52	14.25 13.54 12.30 10.50 9.84	14.25 27.79 40.09

Callinectes sapidus	0.17	0.14	5.80	0.50	6.12 75.95	

Table 81. Results of ANOSIM analysis of otter trawl resemblance matrix between sample sites.

ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem15 Data type: Similarity Selection: All

Factors Place Name Type Levels A Site Unordered 5

Site levels B01 B10 B22 B31

B42

Tests for differences between unordered Site groups Global Test Sample statistic (R): 0.433 Significance level of sample statistic: 0.1% Number of permutations: 999 (Random sample from a large number) Number of permuted statistics greater than or equal to R: 0

	R	Significance	Possible	Actual	Number >=
Groups	Statistic	Level %	Permutations	Permutations	Observed
в01, в10	0.065	1.1	Very large	999	10
в01, в22	0.353	0.1	Very large	999	0
в01, в31	0.727	0.1	Very large	999	0
в01, в42	0.945	0.1	Very large	999	0
в10, в22	0.306	0.1	Very large	999	0
в10, в31	0.704	0.1	Very large	999	0
в10, в42	0.941	0.1	Very large	999	0
в22, в31	0.093	0.5	Very large	999	4
в22, в42	0.176	0.7	Very large	999	6
в31, в42	0.065	5.2	Very large	999	51
			-		

Table 82. Results of ANOSIM analysis of otter trawl resemblance matrix between seasons. ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem15 Data type: Similarity Selection: All

Factors Place Name Type Levels A Season Unordered 3

Season levels Winter Spring Summer

Tests for differences between unordered Season groups Global Test Sample statistic (R): 0.085 Significance level of sample statistic: 0.1% Number of permutations: 999 (Random sample from a large number) Number of permuted statistics greater than or equal to R: 0

	R	Significance	Possible	Actual	Number >=
	Statistic	Level %	Permutations	Permutations	Observed
Winter, Spring	0.097	0.3	Very large	999	2
Winter, Summer	0.048	2.5	Very large	999	24
Spring, Summer	0.114	0.3	Very large	999	2

Table 83. Results of ANOSIM analysis of otter trawl resemblance matrix between flow tiers.

ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem15 Data type: Similarity Selection: All

Factors Place Name Type Levels A Hydrologic Condition-Flow Tier V2 Unordered 6

Hydrologic Condition-Flow Tier V2 levels Average-Subsistence Average-Base Average-3ps Wet-2ps Wet-Subsistence Wet-Base

```
Tests for differences between unordered Hydrologic Condition-Flow Tier V2 groups Global Test
Sample statistic (R): 0.057
Significance level of sample statistic: 0.8%
Number of permutations: 999 (Random sample from a large number)
Number of permuted statistics greater than or equal to R: 7
```

	R	Significance	Possible	Actual	Number >=
Groups	Statistic	Level %	Permutations	Permutations	Observed
Average-Subsistence, Average-Base	0.145	1.3	Very large	999	12
Average-Subsistence, Average-3ps	0.18	0.1	Very large	999	0

Average-Subsistence, Wet-2ps	0.101	11.3	28048800	999	112
Average-Subsistence, Wet-Subsistence	0.029	13.1	Very large	999	130
Average-Subsistence, Wet-Base	0.122	1.2	Very large	999	11
Average-Base, Average-3ps	0.015	27.4	Very large	999	273
Average-Base, Wet-2ps	-0.009	46.2	1307504	999	461
Average-Base, Wet-Subsistence	0.059	9.5	Very large	999	94
Average-Base, Wet-Base	0.008	40.7	Very large	999	406
Average-3ps, Wet-2ps	-0.07	89.7	52451256	999	896
Average-3ps, Wet-Subsistence	0.111	1.4	Very large	999	13
Average-3ps, Wet-Base	-0.013	63.1	Very large	999	630
Wet-2ps, Wet-Subsistence	-0.014	49.5	14307150	999	494
Wet-2ps, Wet-Base	-0.07	90.2	124403620	999	901
Wet-Subsistence, Wet-Base	0.078	3.5	Very large	999	34

Table 84. Results of ANOSIM analysis of beam trawl resemblance matrix between sample sites.

ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem1 Data type: Similarity Selection: All

Factors Place Name Type Levels A Site Unordered 5

Site levels B01 B10 B22 B31 B42

Tests for differences between unordered Site groups Global Test Sample statistic (R): 0.071 Significance level of sample statistic: 0.1% Number of permutations: 999 (Random sample from a large number) Number of permuted statistics greater than or equal to R: 0

	R	Significance	Possible	Actual	Number >=
Groups	Statistic	Level %	Permutations	Permutations	Observed
в01, в10	-0.02	81.5	Very large	999	814
в01, в22	0.068	1.4	Very large	999	13
в01, в31	0.072	0.7	Very large	999	6
в01, в42	0.27	0.1	Very large	999	0
в10, в22	0	41.1	Very large	999	410
в10, в31	0.023	14.4	Very large	999	143
в10, в42	0.16	0.3	Very large	999	2
в22, в31	0.02	17.6	Very large	999	175
в22, в42	0.156	0.3	Very large	999	2
в31, в42	0.052	9.9	Very large	999	98

Table 85. Results of ANOSIM analysis of beam trawl resemblance matrix between seasons.

ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem1 Data type: Similarity Selection: All

Factors Place Name Type Levels A Season Unordered 3

Season levels Winter Spring Summer

Tests for differences between unordered Season groups Global Test Sample statistic (R): 0.233 Significance level of sample statistic: 0.1% Number of permutations: 999 (Random sample from a large number) Number of permuted statistics greater than or equal to R: 0

Pairwise Tests					
	R	Significance	Possible	Actual	Number >=
Groups	Statistic	Level %	Permutations	Permutations	Observed
Winter, Spring	0.157	0.1	Very large	999	0
Winter, Summer	0.321	0.1	Very large	999	0
Spring, Summer	0.221	0.1	Very large	999	0

Table 86. Results of ANOSIM analysis of beam trawl resemblance matrix between flow tiers.

ANOSIM Analysis of Similarities

One-Way - A

Resemblance worksheet Name: Resem1 Data type: Similarity Selection: All

FactorsTypeLevelsPlaceNameTypeLevelsAHydrologic Condition-Flow TierUnordered6

Hydrologic Condition-Flow Tier levels

Avg-Sub Avg-Base Avg-3ps Wet-2ps Wet-Sub Wet-Base

Tests for differences between unordered Hydrologic Condition-Flow Tier groups Global Test Sample statistic (R): 0.06 Significance level of sample statistic: 0.2% Number of permutations: 999 (Random sample from a large number) Number of permuted statistics greater than or equal to R: 1

	R	Significance			Number >=
Groups	Statistic	Level %	Permutations	Permutations	Observed
Avg-Sub, Avg-Base	0.119	2.8	Very large	999	27
Avg-Sub, Avg-3ps	0.154	0.1	Very large	999	0

Avg-Sub, Wet-2ps	0.372	0.1	28048800	999	0	
Avg-Sub, Wet-Sub	0.094	0.1	Very large	999	0	
Avg-Sub, Wet-Base	0.133	0.1	Very large	999	0	
Avg-Base, Avg-3ps	-0.041	86.9	Very large	999	868	
Avg-Base, Wet-2ps	0.15	3.1	1307504	999	30	
Avg-Base, Wet-Sub	0.01	33.9	Very large	999	338	
Avg-Base, Wet-Base	-0.021	63.1	Very large	999	630	
Avg-3ps, Wet-2ps	0.018	35.6	10015005	999	355	
Avg-3ps, Wet-Sub	0.062	3.2	Very large	999	31	
Avg-3ps, Wet-Base	-0.028	82.9	Very large	999	828	
Wet-2ps, Wet-Sub	-0.022	64.5	28048800	999	644	
Wet-2ps, Wet-Base	-0.072	84.7	124403620	999	846	
Wet-Sub, Wet-Base	0.035	7.7	Very large	999	76	

Table 87. Results of Cluster analysis of otter trawl resemblance matrix between sample sites in the Gulf of Mexico.

Hierarchical Cluster analysis

Resemblance worksheet Name: Resem1 Data type: Similarity Selection: All

Parameters Cluster mode: Group average

Simprof test

Data worksheet Name: Data1 Data type: Other Sample selection: All Variable selection: All

Simprof Parameters Type 1 (Analyse: Samples - Permute within: Variables) Number of permutations: 999 Significance level: 5% Resemblance: Resemblance measure: S17 Bray-Curtis similarity

Samples

1 G1D1 2 G1D1 3 G1 4 G1 5 G1U1 6 G1U1 7 G2 8 G2 9 G3 10 G3

10 03

Combining 3+5 -> 11 at 77.18; Pi: 0 Sig(%): 100 4+8 -> 12 at 76.61 6+12 -> 13 at 71.37; Pi: 1.36 Sig(%): 58.7 11+13 -> 14 at 50.26; Pi: 6.37 Sig(%): 0.1 1+7 -> 15 at 46.59; Pi: 0 Sig(%): 100 14+15 -> 16 at 35.09; Pi: 6.41 Sig(%): 0.1 10+16 -> 17 at 23.01; Pi: 6.84 Sig(%): 0.1 9+17 -> 18 at 10.87; Pi: 8.41 Sig(%): 0.1 2+18 -> 19 at 0; Pi: 10.7 Sig(%): 0.1

Cophenetic correlation: 0.94777

Group)	N	Median	Mean Rank	Z-Va	lue	Null hypothesis	F	l₀: All media	ans are equal
B01		25	5	55.0	-0.75	5	Alternative		-	one median is
B10		25	9	59.6	0.02		hypothesis		lifferent	
B22		25	10	59.3	-0.03	3	Method	DF	H-Value	P-Value
B31		25	10	56.0	-0.58	8	Not adjusted for ties	4	2.66	0.616
B42		18	15	70.8	1.52		Adjusted for ties	4	2.68	0.613
Over	all	118		59.5						
Table	of F	-valu	es (adjusted	l for ties)			Comparisons:		10	
	B0	1	B10	B22	B31	B42	Ties:	63	0.050	
B01	1.0	0000	*	*	*	*	Family Alpha: Bonferroni Individu	ual Alı		
B10	0.6	2755	1.00000	*	*	*	Bonferroni Z-value	(2-sic	ded): 2.773	3
B22	0.6	5276	0.97188	1.00000	*	*				
B31	0.9	1579	0.70436	0.73070	1.00000	*				
B42	0.1	3350	0.29074	0.27626	0.16041	1				

Table 88. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of beam trawl collections for each sample site.

Table 89. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of beam trawl collections for each season.

Group	N	Median	Mean Rank	Z-Value	Null hypothesis	ŀ	l₀: All media	ans are equal	
Winter	36	22.5	65.8	3.94	Alternative	F	l₁: At least o	one median is	
Spring	32	16.0	59.4	2.10	hypothesis	C	different		
Summer	32	0.0	24.5	-6.16	Method	DF	H-Value	P-Value	
Overall	100		50.5		Not adjusted for ties	2	38.71	0.000	
					Adjusted for ties	2	39.07	0.000	
Table of P	-value	es (adjusted	l for ties)		Comparisons:		3		
		Winter	Spring	Summer	Ties:	52			
					Family Alpha:		0.017		
Winter		1.00000	*	*	Bonferroni Individu	ual Alj	oha: 0.00	5	
Spring		0.36353	1.00000	*	Bonferroni Z-value	(2-sic	ded): 2.773	3	
Summer		0.00000	0.00000	1					

Group		N.	Mediar			n Rank	Z-Val		Null hypothesis	Н	₀ : All mediar	ns are equal
Avg-9	Sub	20	11.5	5	58.0)	1.30		Alternative			ne median is
Avg-E	Base	12	17.5	5	56.7	7	0.79		hypothesis	d	ifferent	
Avg-3	3ps	16	17.5	5	55.7	7	0.78		Method	DF	H-Value	P-Value
Wet-	2ps	8	19.5	e	51.8	3	1.14		Not adjusted for ties	5	9.49	0.091
Wet-	Sub	20	2.0	3	35.4	Ļ	-2.60)	Adjusted for ties	5	9.58	0.088
Wet-	Base	24	5.5	2	46.5	5	-0.77	,				
Over	all	100)	5	50.5	5						
Table	of P-	valu	ies (adjus	sted fo	or ti	es)			Comparisons:		15	
	Avg-		-	Avg-3			Wet-	Wet-	Ties:	52		
	Sub		Base	0	•		Sub	Base	Family Alpha:		0.083	
	500		Buse			200	545	Buse	Bonferroni Individ	ual Alc	ha: 0.006	
Avg- Sub	1.000	000	*	*		*	*	*	Bonferroni Z-value			
Avg- Base		875	1.00000	*		*	*	*				
Avg- 3ps	0.804	479	0.92399	1.000	00	*	*	*				
Wet- 2ps	0.759	938	0.70208	0.626	01	1.00000	*	*				
Wet- Sub	0.013	312	0.04330	0.036	49	0.02916	1.00000	*				
Wet- Base		548	0.31736	0.325	88	0.19581	0.20422	1				

Table 90. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of beam trawl collections for each flow tier.

Group)	N	Median	Mean Rank	Z-Va	ue	Null hypothesis	Н	₀ : All media	ns are equal
B01		26	247	82.6	3.54		Alternative	Н	1: At least o	ne median is
B10		26	176	70.5	1.56		hypothesis	d	ifferent	
B22		25	41	51.8	-1.47	7	Method	DF	H-Value	P-Value
B31		25	93	61.5	0.09		Not adjusted for ties	4	28.37	0.000
B42		19	12	29.9	-4.2	1	Adjusted for ties	4	28.37	0.000
Overa	all	121		61.0						
Table	of P-	-valu	es (adjustec	for ties)			Comparisons:		10	
	B01		B10	B22	B31	B42		23		
B01	1.00	0000	*	*	*	*	Family Alpha: Bonferroni Individua	al Alp		
B10	0.2	1440	1.00000	*	*	*	Bonferroni Z-value (2	2-sia	ed): 2.773	i
B22	0.00	0174	0.05723	1.00000	*	*				
B31	0.03	3240	0.36277	0.32616	1.00000	*				
B42	0.00	0000	0.00013	0.04039	0.00305	1				

Table 91. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of otter trawl collections for each sample site.

Table 92. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of otter trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I ₀ : All media	ins are equal	
Winter	36	200.0	55.3	0.95	Alternative	F	H ₁ : At least one median is		
Spring	32	38.5	39.8	-2.70	hypothesis	d	different		
Summer	34	223.0	58.5	1.70	Method	DF	H-Value	P-Value	
Overall	102		51.5		Not adjusted for ties	2	7.53	0.023	
					Adjusted for ties	2	7.53	0.023	
Table of P	-value	es (adjuste	d for ties)		Comparisons:		3		
		Winter	Spring	Summer	Ties:	9			
Winter		1.00000	*	*	Family Alpha: Bonferroni Individua	al Alp			
Spring		0.03111	1.00000	*	Bonferroni Z-value (Z-SIC	iea): 2.//3	5	
Summer		0.64584	0.01009	1					

Group		N.	Median			n Rank	Z-Valu		Null hypothesis		H ₀ : All mediar	is are equal
Avg-9	Sub	20	276.5	6	51.3	}	1.65		Alternative hypoth	hesis	H ₁ : At least or different	ne median is
Avg-E	Base	12	59.5	2	45.4	Ļ	-0.76		Method	DF		P-Value
Avg-3	3ps	16	34.0	3	33.1		-2.71			5		
Wet-2	2ps	12	77.0	Ę	50.2	2	-0.16		Not adjusted for ties	5	15.58	0.008
Wet-	Sub	18	354.5	6	58.6	5	2.69		Adjusted for ties	5	15.58	0.008
Wet-	Base	24	72.0	2	46.5		-0.94					
Over	all	102	2	[51.5	5						
Table	of P-	valu	ies (adjus	sted fo	or ti	es)			Comparisons:		15	
	Avg-		Avg-	Avg-3	3ps	Wet-	Wet-	Wet-	Ties:	9		
	Sub		Base	0	·	2ps	Sub	Base	Family Alpha:		0.083	
						-1			Bonferroni Individ	lual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*		*	*	*	Bonferroni Z-value			
Avg- Base		049	1.00000	*		*	*	*				
Avg- 3ps	0.004	448	0.27707	1.000	000	*	*	*				
Wet- 2ps	0.304	460	0.68906	0.129	985	1.00000	*	*				
Wet- Sub	0.450	039	0.03554	0.000)49	0.09614	1.00000	*				
Wet- Base		399	0.91278	0.159	971	0.72446	0.01692	1				

Table 93. Results of Kruskal-Wallis test and Dunn's multiple comparison test between total catch of otter trawl collections for each flow tier.

Group	Ν		Median	Mean Rank	Z-Va	lue	Null hypothesis	F	I ₀ : All media	ans are equal
B01	25	5	1	48.9	-1.75	5	Alternative	F	I1: At least o	one median is
B10	25	5	2	52.8	-1.1(C	hypothesis	d	lifferent	
B22	25	5	4	64.3	0.79		Method	DF	H-Value	P-Value
B31	25		3	60.8	0.21		Not adjusted for ties	4	7.61	0.107
B42	18	3	4	75.1	2.10		Adjusted for ties	4	7.76	0.101
Overa	all 11	8		59.5						
Table	of P-va	alue	es (adjustec	l for ties)			Comparisons:		10	
	B01		B10	B22	B31	B42	Ties:	107		
B01	1.000	00	*	*	*	*	Family Alpha: Bonferroni Individu	ual Alp		
B10	0.682	57	1.00000	*	*	*	Bonferroni Z-value	(2-sic	led): 2.773	3
B22	0.108	59	0.23186	1.00000	*	*				
B31	0.215	20	0.40629	0.71500	1.00000	*				
B42	0.012	44	0.03357	0.30242	0.17214	1				

Table 94. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of beam trawl collections for each sample site.

Table 95. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of beam trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	l _o : All media	ans are equal	
Winter	36	4	66.2	4.05	Alternative	F	H_1 : At least one median is		
Spring	32	3	58.2	1.81	hypothesis	different			
Summer	32	0	25.2	-5.98	Method	DF	H-Value	P-Value	
Overall	100		50.5	-3.90	Not adjusted for ties	2	37.03	0.000	
					Adjusted for ties	2	37.80	0.000	
Table of P	-value	es (adjuste	d for ties)		Comparisons:		3		
		Winter	Spring	Summer	Ties:	89			
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ual Alp			
Spring		0.25088	1.00000	*	Bonferroni Z-value	(2-510	iea): 2.77.	5	
Summer		0.00000	0.00000	1					

Group	N		Median	n Me	an Rank	Z-Valu	ie	Null hypothesis		H ₀ : All mediar	ns are equal
Avg-Su			4	61		1.84		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-Ba				59		1.18		Method	DF	H-Value	P-Value
Avg-3p	os 1	6	3	54	.6	0.62		Not adjusted for	5	13.41	0.020
Wet-2p	ps 8		4	60	.7	1.04		ties			
Wet-Su	ub 2	0	1	32	.7	-3.06		Adjusted for ties	5	13.68	0.018
Wet-Ba	ase 2	4	2	45	.7	-0.94					
Overal	1	00		50	.5						
Table o	of P-va	lue	es (adjus	sted for	ties)			Comparisons:		15	
А	Avg-	A	Avg-	Avg-3p	s Wet-	Wet-	Wet-	Ties:	89		
S	Sub		Base	0.	2ps	Sub	Base	Family Alpha:		0.083	
					1			Bonferroni Individ	lual Al	pha: 0.006	
Avg- 1 Sub	0000.1	0 *	r	*	*	*	*	Bonferroni Z-value	e (2-si	ded): 2.773	
Avg- 0 Base).8969	2 1	.00000	*	*	*	*				
Avg- 0 3ps).4960	4 ().63549	1.0000) *	*	*				
Wet- 0 2ps).9692	9 ().94551	0.6240	7 1.00000	*	*				
Wet- 0 Sub).0017	5 0).00984	0.0231	7 0.01992	1.00000	*				
Wet- 0 Base).0749	2 ().16413	0.3354	2 0.20007	0.13659	1				

Table 96. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of beam trawl collections for each flow tier.

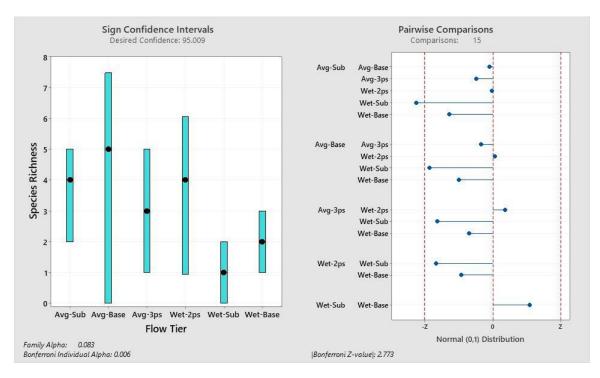


Figure 67. Dunn's multiple comparison test for significant differences in beam trawl species richness between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between flow tiers ($p \le 0.006$).

Group		Ν	Median	Mean Rank	Z-Va	ue	Null hypothesis	F	I₀: All media	ans are equal
B01		26	10.0	91.3	4.98		Alternative	F	l₁: At least c	one median is
B10		26	9.5	81.6	3.37		hypothesis	d	lifferent	
B22		25	4.0	45.1	-2.54	1	Method	DF	H-Value	P-Value
B31		25	4.0	49.2	-1.89	Э	Not adjusted for ties	4	53.42	0.000
B42		19	3.0	27.8	-4.50)	Adjusted for ties	4	53.83	0.000
Overa	all	121		61.0						
Table	of P	-valu	es (adjusted	for ties)			Comparisons:		10	
	B01	1	B10	B22	B31	B42	Ties:	105		
B01	1.0	0000	*	*	*	*	Family Alpha: Bonferroni Individu	ual Alp		
B10	0.3	1241	1.00000	*	*	*	Bonferroni Z-value	(2-sic	led): 2.773	3
B22	0.0	0000	0.00019	1.00000	*	*				
B31	0.0	0002	0.00095	0.67673	1.00000	*				
B42	0.0	0000	0.00000	0.10301	0.04360	1				

Table 97. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of otter trawl collections for each sample site.

Table 98. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of otter trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	l₀: All media	ans are equal
Winter	36	8.0	57.5	1.51	Alternative	F	l₁: At least o	one median is
Spring	32	4.5	39.2	-2.85	hypothesis	C	lifferent	
Summer	34	8.5	56.8	1.27	Method	DF	H-Value	P-Value
Overall	102		51.5		Not adjusted for ties	2	8.10	0.017
					Adjusted for ties	2	8.16	0.017
Table of P	-value	es (adjuste	d for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	86		
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ual Alp		
Spring		0.01063	1.00000	*	Bonferroni Z-value	(2-510	ied): 2.773	3
Summer		0.92173	0.01533	1				

Group	D	Ν	Median	Me	an Rank	Z-Valu	ie	Null hypothesis		H₀: All mediar	ns are equal
Avg-S	Sub	20	10.5	67.	8	2.74		Alternative hypoth		H₁: At least or different	ne median is
Avg-E	Base	12	6.5	50.	1	-0.18		Method	DF		P-Value
Avg-3	3ps	16	4.0	31.	9	-2.88					
Wet-2	2ps	12	6.0	45.	8	-0.71		Not adjusted for ties	5	20.68	0.001
Wet-	Sub	18	10.0	67.	2	2.48		Adjusted for ties	5	20.82	0.001
Wet-l	Base	24	6.0	42.	8	-1.66					
Over	all	102	2	51.	5						
Table	of P-	valu	es (adjus	sted for	ies)			Comparisons:		15	
	Avg-		Avg-	Avg-3ps	Wet-	Wet-	Wet-	Ties:	86		
	Sub		Base	0 1	2ps	Sub	Base	Family Alpha:		0.083	
	000		2000		-p5	000	20.00	Bonferroni Individ	ual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*	*	*	*	Bonferroni Z-value		•	
Avg- Base		034	1.00000	*	*	*	*				
Avg- 3ps	0.000)29	0.10706	1.00000	*	*	*				
Wet- 2ps	0.04	156	0.72404	0.21717	1.00000	*	*				
Wet- Sub	0.95´	168	0.11943	0.00050	0.05190	1.00000	*				
Wet- Base		506	0.48177	0.25587	0.76740	0.00784	1				

Table 99. Results of Kruskal-Wallis test and Dunn's multiple comparison test between species richness of otter trawl collections for each flow tier.

Table 100. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of beam trawl collections for each sample site.

	Group	Ν	Median	Mean Ran	ik Z-Va	alue	Null hypothesis	ŀ	I ₀ : All media	ans are equal
-	B01	25	0.000000	42.1	-2.8	36	Alternative	F	l1: At least o	one median is
	B10	25	0.529644	51.7	-1.2	29	hypothesis	d	lifferent	
	B22	25	0.687207	66.3	1.13	3	Method	DF	H-Value	P-Value
	B31	25	0.713838	64.8	0.88	8	Not adjusted for ties	4	14.41	0.006
	B42	18	0.953108	77.6	2.44	4	Adjusted for ties	4	14.95	0.005
	Overall	118		59.5						
Tab	le of P-v	alues	adjusted	for ties)			Comparisons:		10	
	B01		B10	B22	B31	B42	Ties:	46		
BO	1 1.000	000	*	*	*	*	Family Alpha: Bonferroni Individu	ual Alp		
B10	0 0.314	120	1.00000	*	*	*	Bonferroni Z-value	2-510	ieu). 2.773	5
B2	2 0.010)78	0.12275	1.00000	*	*				
B3 ⁻	1 0.016	586	0.16656	0.87287	1.00000	*				
B42	2 0.000	063	0.01249	0.27761	0.21790	1				

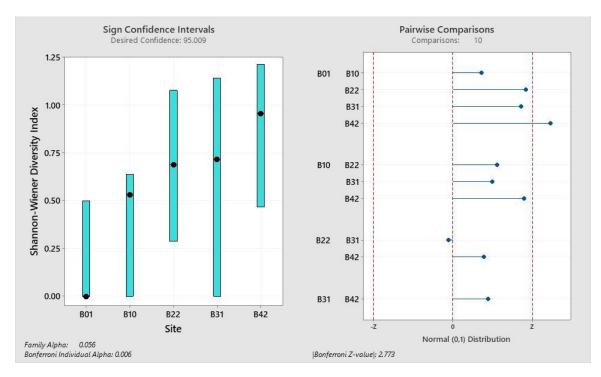


Figure 68. Dunn's multiple comparison test for significant differences in beam trawl Shannon-Wiener diversity indices between sample sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

Table 101. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of beam trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I₀: All media	ans are equal
Winter	36	0.638763	62.6	3.13	Alternative		-	one median is
Spring	32	0.736330	58.1	1.81	hypothesis	C	lifferent	
Summer	32	0.000000	29.3	-5.02	Method	DF	H-Value	P-Value
Overall	100		50.5		Not adjusted for ties	2	25.65	0.000
					Adjusted for ties	2	27.14	0.000
Table of P	-value	es (adjusted	for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	41		
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ial Alp		
Spring		0.51545	1.00000	*	Bonferroni Z-value	(2-510	led): 2.773	>
Summer		0.00000	0.00004	1				

Table 102. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of beam trawl collections for each flow tier.

Group)	Ν	Median	n P	Mean	Rank	Z-Valu	ie	Null hypothesis		H ₀ : All mediar	ns are equal
Avg-S	Sub	20	0.5936	598 5	58.3		1.34		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-E	Base	12	0.5859	02 5	53.8		0.42					
Avg-3	Bps	16	0.6365	514 5	55.6		0.77		Method	DF		P-Value
Wet-2	2ps	8	0.7528	826 5	58.6		0.83		Not adjusted for ties	5	6.88	0.230
Wet-9	Sub	20	0.0000	000 3	38.0		-2.16		Adjusted for ties	5	7.28	0.201
Wet-I	Base	24	0.2176	507 4	46.7		-0.74					
Over	all	100)	5	50.5							
Table	of P-	valu	es (adjus	sted fo	or tie	es)			Comparisons:		15	
	Avg-		Avg-				Wet-	Wet-	Ties:	41		
	Sub		Base	0		2ps	Sub	Base	Family Alpha:		0.083	
	545		Dusc		-	-00	546	Base	Bonferroni Individ	ual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*	*	÷	*	*	Bonferroni Z-value		•	
Avg- Base		149	1.00000	*	*	ł	*	*				
Avg- 3ps	0.774	482	0.87017	1.000)00 *	¢.	*	*				
Wet- 2ps	0.978	302	0.70973	0.803	397 1	.00000	*	*				
Wet- Sub	0.022	251	0.12300	0.062	216 0).07972	1.00000	*				
Wet- Base		386	0.47361	0.327	787 ().29984	0.30620	1				

Group	Ν	Median	Mean R	ank Z-'	Value	Null hypothesis	H ₀ :	All medians	are equal
B01	26	1.01740	6	9.8	1.45	Alternative hypothesis	-	At least one erent	e median is
B10	26	1.22581	8	3.2	3.63	51			
B22	25	0.56234	4	8.6	-1.99	Method	DF	H-Value	P-Value
B31	25	0.65908	5	50.2	-1.72	Not adjusted for ties	4	19.71	0.001
B42	19	0.63651	4	9.1	-1.61	Adjusted for ties	4	19.71	0.001
Overall	121		6	51.0					
Table of	P-values	(adjusted fo	or ties)			Comparisons:	1	0	
	B01	B10	B22	B31	B42	Ties:	7	056	
B01	1.00000	*	*	*	*	Family Alpha: Bonferroni Individu	ial Alph		
B10	0.17129	1.00000	*	*	*	Bonferroni Z-value	(2-sideo	d): 2.773	
B22	0.03041	0.00043	1.00000	*	*				
B31	0.04596	0.00081	0.86710	1.00000	*				
B42	0.04978	0.00129	0.96272	0.91339	1				

Table 103. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of otter trawl collections for each sample site.

Table 104. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of otter trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I₀: All media	ins are equal
Winter	36	0.816683	49.8	-0.44	Alternative	F	l₁: At least c	one median is
Spring	32	0.948176	47.6	-0.90	hypothesis	C	lifferent	
Summer	34	0.995492	57.0	1.33	Method	DF	H-Value	P-Value
Overall	102		51.5		Not adjusted for ties	2	1.86	0.394
					Adjusted for ties	2	1.86	0.394
Table of P	-value	es (adjusted	for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	3		
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ual Alp		
Spring		0.76274	1.00000	*	Bonferroni Z-value	(2-510	led): 2.773	j
Summer		0.30549	0.19610	1				

Table 105. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon-Wiener diversity indices of beam trawl collections for each flow tier.

Group)	Ν	Median	Mea	an Rank	Z-Valu	e	Null hypothesis		H ₀ : All mediar	ns are equal
Avg-S	Sub	20	1.2055	0 58.6	5	1.20		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-E	Base	12	0.9594	2 54.5	5	0.37					
Avg-3	3ps	16	0.9206	9 42.4	1	-1.34		Method	DF		P-Value
Wet-2	2ps	12	1.0581	5 58.3	3	0.85		Not adjusted for ties	5	3.85	0.572
Wet-9	Sub	18	0.7909	4 50.7	1	-0.22		Adjusted for ties	5	3.85	0.572
Wet-l	Base	24	0.8729	2 47.8	3	-0.71					
Over	all	102	2	51.5	5						
Table	of P-	valu	es (adjus	ted for t	ies)			Comparisons:		15	
	Avg-		Avg-			Wet-	Wet-	Ties:	3		
	Sub		Base	0 1	2ps	Sub	Base	Family Alpha:		0.083	
					-1			Bonferroni Individ	ual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*	*	*	*	Bonferroni Z-value			
Avg- Base		433	1.00000	*	*	*	*				
Avg- 3ps	0.102	274	0.28448	1.00000	*	*	*				
Wet- 2ps	0.980)31	0.75098	0.15867	1.00000	*	*				
Wet- Sub	0.377	721	0.69062	0.44852	0.45588	1.00000	*				
Wet- Base		573	0.52006	0.57428	0.31264	0.79975	1				

Table 106. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of beam trawl collections for each sample site.

Group	o N		Median	Mean Rank	Z-Va	lue	Null hypothesis H ₀ : All medians are equal
B01	25)	0.000000	43.8	-2.5	8	Alternative H ₁ : At least one median is
B10	25		0.387682	53.1	-1.0	5	hypothesis different
B22	25	5	0.591673	64.7	0.86	5	Method DF H-Value P-Value
B31	25	5	0.577008	61.9	0.40)	Not adjusted for 4 12.97 0.011 ties
B42	18	8	0.730561	79.5	2.69)	Adjusted for ties 4 13.45 0.009
Over	all 11	8		59.5			
Table	of P-va	lue	es (adjusted	for ties)			Comparisons: 10
	B01		B10	B22	B31	B42	Ties: 46
B01	1.000	00	*	*	*	*	Family Alpha: 0.056 Bonferroni Individual Alpha: 0.006 Bonferroni Z-value (2-sided): 2.773
B10	0.328	59	1.00000	*	*	*	bollienom z-value (z-slueu). 2.773
B22	0.028	09	0.22281	1.00000	*	*	
B31	0.056	72	0.35313	0.77139	1.00000	*	
B42	0.000	59	0.01105	0.15397	0.09074	1	

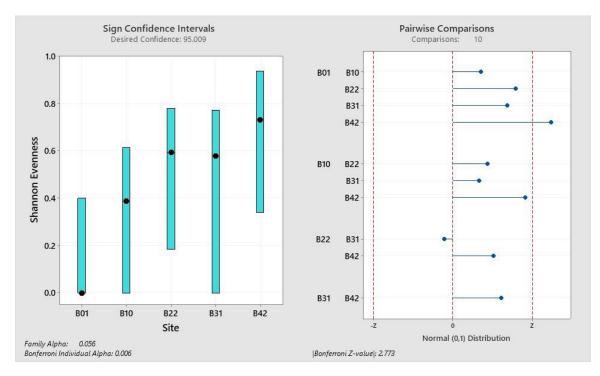


Figure 69. Dunn's multiple comparison test for significant differences in beam trawl Shannon evenness between sample sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value/ indicates a significant difference between sites ($p \le 0.006$).

Table 107. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of beam trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I ₀ : All media	ans are equal
Winter	44	0.623892	71.7	2.99	Alternative		-	one median is
Spring	39	0.577008	67.1	1.70	hypothesis	C	lifferent	
Summer	35	0.000000	35.7	-4.91	Method	DF	H-Value	P-Value
Overall	118		59.5		Not adjusted for ties	2	24.52	0.000
					Adjusted for ties	2	25.44	0.000
Table of P	-value	es (adjusted	for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	46	0.047	
Winter		1.00000	*	*	Family Alpha: Bonferroni Individi			
Spring		0.53223	1.00000	*	Bonferroni Z-value	(Z-SIC	led): 2.773	5
Summer		0.00000	0.00006	1				

Table 108. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of beam trawl collections for each flow tier.

Group)	Ν	Median	Μ	ean Rank	Z-Valu	ie	Null hypothesis		H ₀ : All mediar	ns are equal
Avg-S	Sub	23	0.5916	73 62	2.0	0.39		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-E	Base	15	0.3876	82 58	3.4	-0.13					
Avg-3	3ps	20	0.6003	34 60	5.4	0.99		Method	DF		P-Value
Wet-2	2ps	9	0.4244	05 55	5.4	-0.37		Not adjusted for ties	5	1.42	0.922
Wet-9	Sub	23	0.0000	00 50	5.8	-0.43		Adjusted for ties	5	1.48	0.916
Wet-I	Base	28	0.3258	89 56	5.7	-0.50					
Over	all	118	3	59	9.5						
Table	of P-	valu	es (adjus	ted fo	ties)			Comparisons:		15	
	Avg-				os Wet-	Wet-	Wet-	Ties:	46		
	Sub		Base			Sub	Base	Family Alpha:		0.083	
	Sub		Dase		2ps	200	Dase	Bonferroni Individ	ا۸ ادی		
Avg- Sub	1.000	000	*	*	*	*	*	Bonferroni Z-value			
Avg- Base		318	1.00000	*	*	*	*				
Avg- 3ps	0.664	196	0.48418	1.0000	0 *	*	*				
Wet- 2ps	0.620)72	0.83466	0.4153	1 1.00000	*	*				
Wet- Sub	0.598	331	0.88308	0.3466	0 0.92059	1.00000	*				
Wet- Base		367	0.87142	0.3206	57 0.92470	0.99154	. 1				

Table 109. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of otter trawl collections for each sample site.

Group) N		Median	Mean Rank	Z-Va	lue	Null hypothesis	F	l₀: All media	ns are equal
B01	20	5	0.477009	52.7	-1.3	7	Alternative		-	ne median is
B10	20	5	0.569958	68.3	1.21		hypothesis		lifferent	
B22	2	5	0.663590	63.0	0.32	2	Method	DF	H-Value	P-Value
B31	2	5	0.535398	53.2	-1.2	5	Not adjusted for ties	4	5.19	0.269
B42	19	9	0.680772	70.0	1.22	2	Adjusted for ties	4	5.19	0.269
Overa	all 12	21		61.0						
Table	of P-va	alue	es (adjusted	for ties)			Comparisons:		10	
	B01		B10	B22	B31	B42	Ties:	7		
B01	1.000	00	*	*	*	*	Family Alpha: Bonferroni Individu Bonferroni Z-value	ual Alı		
B10	0.106	70	1.00000	*	*	*	Domentom 2-value	(2-310	ieu). 2.775	
B22	0.293	21	0.58491	1.00000	*	*				
B31	0.955	67	0.12314	0.32419	1.00000	*				
B42	0.100	76	0.87389	0.50918	0.11495	1				

Table 110. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of otter trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I₀: All media	ins are equal
Winter	44	0.491377	58.6	-0.57	Alternative		1	one median is
Spring	39	0.547895	63.1	0.45	hypothesis	C	lifferent	
Summer	38	0.585466	61.7	0.14	Method	DF	H-Value	P-Value
Overall	121		61.0		Not adjusted for ties	2	0.36	0.835
					Adjusted for ties	2	0.36	0.835
Table of P	-value	es (adjusted	for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	7		
					Family Alpha:		0.017	
Winter		1.00000	*	*	Bonferroni Individu			
Spring		0.55873	1.00000	*	Bonferroni Z-value	(Z-SIC	ieu): 2.773	j
Summer		0.69186	0.85785	1				

Table 111. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Shannon evenness of otter trawl collections for each flow tier.

Group)	Ν	Median		Meai	n Rank	Z-Valu	e	Null hypothesis		H ₀ : All mediar	is are equal
Avg-S	Sub	23	0.5302	33	55.4		-0.85		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-E	Base	15	0.6807	72	71.2		1.20					- · · ·
Avg-3	ßps	20	0.5284	05	58.9		-0.30		Method	DF		P-Value
Wet-2	2ps	14	0.6290	37	66.6		0.64		Not adjusted for ties	5	3.69	0.595
Wet-9	Sub	21	0.4212	76	53.0		-1.15		Adjusted for ties	5	3.69	0.595
Wet-	Base	28	0.6250	37	64.8		0.65					
Overa	all	121	1		61.0							
Table	of P-	valu	es (adjus	sted f	or ti	es)			Comparisons:		15	
	Avg-			Avg-3			Wet-	Wet-	Ties:	7		
	Sub		Base		•	2ps	Sub	Base	Family Alpha:		0.083	
	Sub		Dase			243	500	Dase	Bonferroni Individu	ual Al		
Avg- Sub	1.000	000	*	*		*	*	*	Bonferroni Z-value		•	
Avg- Base		552	1.00000	*		*	*	*				
Avg- 3ps	0.748	334	0.30486	1.000	000	*	*	*				
Wet- 2ps	0.345	581	0.72852	0.525	504	1.00000	*	*				
Wet- Sub	0.819	983	0.12597	0.593	337	0.26040	1.00000	*				
Wet- Base	0.342	250	0.57070	0.563	369	0.87271	0.24463	1				

Table 112. Results of Kruskal-Wallis test and Dunn's multiple comparison test betweenMargalef richness indices of beam trawl collections for each sample site.

Group	D N	١	Median	Mean Rank	Z-Val	ue	Null hypothesis H ₀ : All medians are equal	
B01	25	5 (0.00000	44.3	-2.50)	Alternative H ₁ : At least one median is	;
B10	25	5 (0.55811	50.6	-1.47	7	hypothesis different	
B22	25	5 1	1.01887	67.7	1.35		Method DF H-Value P-Value	
B31	25	5 (0.86562	62.9	0.57		Not adjusted for 4 12.86 0.012 ties	
B42	18	3 (0.91284	76.7	2.32		Adjusted for ties 4 13.34 0.010	
Over	all 1'	8		59.5				
Table	of P-va	alues	s (adjusted	for ties)			Comparisons: 10	
	B01		B10	B22	B31	B42	Ties: 53	
B01	1.000	00	*	*	*	*	Family Alpha: 0.056 Bonferroni Individual Alpha: 0.006 Bonferroni Z-value (2-sided): 2.773	
B10	0.509	86	1.00000	*	*	*	bomentom z-value (z-sideu). 2.775	
B22	0.013	84	0.07148	1.00000	*	*		
B31	0.050	21	0.19389	0.61480	1.00000	*		
B42	0.001	81	0.01186	0.38584	0.18430	1		

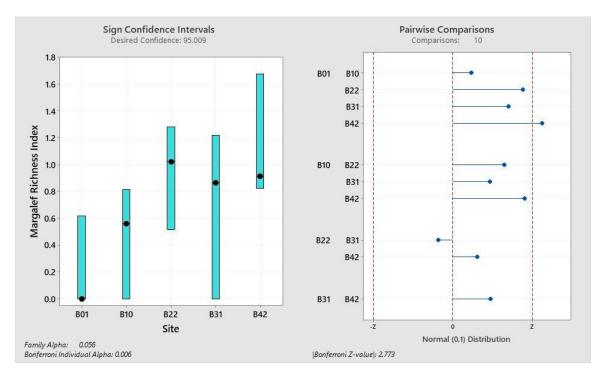


Figure 70. Dunn's multiple comparison test for significant differences in beam trawl Margalef richness indices between sample sites. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

Table 113. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Margalef richness indices of beam trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	ŀ	l₀: All media	ans are equal
Winter	36	0.910239	63.8	3.44	Alternative		-	one median is
Spring	32	0.822680	56.7	1.46	hypothesis	C	lifferent	
Summer	32	0.000000	29.3	-5.00	Method	DF	H-Value	P-Value
Overall	100		50.5		Not adjusted for ties	2	26.05	0.000
					Adjusted for ties	2	27.57	0.000
Table of P	-value	es (adjusted	for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	47		
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ual Alı		
Spring		0.29689	1.00000	*	Bonferroni Z-value	(2-510	ieu). 2.773)
Summer		0.00000	0.00011	1				

Table 114. Results of Kruskal-Wallis test and Dunn's multiple comparison test betweenMargalef richness indices of beam trawl collections for each flow tier.

Group		Ν	Median	Mea	in Rank	Z-Valu	e	Null hypothesis		H ₀ : All mediar	ns are equal
Avg-Si	ub	20	0.8674	8 59.3	3	1.51		Alternative hypoth		H ₁ : At least or different	ne median is
Avg-B	ase	12	0.9399	2 57.2	2	0.85					D.V.L.
Avg-3	ps	16	0.8020	8 52.7	7	0.33		Method	DF		P-Value
Wet-2	ps	8	1.0101	5 57.3	3	0.69		Not adjusted for ties	5	8.04	0.154
Wet-S	ub	20	0.0000	0 36.2	2	-2.46		Adjusted for ties	5	8.51	0.131
Wet-B	lase	24	0.3559	4 48.0)	-0.48					
Overa	II	100)	50.5	5						
Table	of P-\	valu	es (adjus	sted for t	ies)			Comparisons:		15	
	Avg-		Avg-			Wet-	Wet-	Ties:	47		
	Sub		Base	0 1	2ps	Sub	Base	Family Alpha:		0.083	
	000		2000		-00	500	20.00	Bonferroni Individ	ual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*	*	*	*	Bonferroni Z-value			
Avg- (Base	0.840)95	1.00000	*	*	*	*				
Avg- (3ps	0.486	519	0.67467	1.00000	*	*	*				
Wet- (2ps	0.867	789	0.99354	0.70490	1.00000	*	*				
Wet- (Sub	0.009	967	0.04135	0.08134	0.07354	1.00000	*				
Wet- (Base	0.187	751	0.35684	0.60818	0.41967	0.16625	1				

Table 115. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Margalef richness indices of otter trawl collections for each sample site.

Group) N	Median	Mean Rank	Z-Va	lue	Null hypothesis	F	l₀: All media	ans are equal
B01	26	1.58919	87.6	4.36	i	Alternative		-	one median is
B10	26	1.57362	82.9	3.60)	hypothesis	C	lifferent	
B22	25	0.87362	46.0	-2.40	0	Method	DF	H-Value	P-Value
B31	25	0.73854	42.6	-2.9	5	Not adjusted for ties	4	44.34	0.000
B42	19	0.67925	38.6	-3.04	4	Adjusted for ties	4	44.35	0.000
Overa	all 12	1	61.0						
Table	of P-va	lues (adjuste	ed for ties)			Comparisons:		10	
	B01	B10	B22	B31	B42	Ties:	7		
B01	1.0000)0 *	*	*	*	Family Alpha: Bonferroni Individu	ial Alp		
B10	0.6337	75 1.00000) *	*	*	Bonferroni Z-value	(2-SIC	led): 2.773	5
B22	0.000	0.00017	1.00000	*	*				
B31	0.0000	0 0.00004	0.72876	1.00000	*				
B42	0.000	0.00003	0.48420	0.70596	1				

Table 116. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Margalef richness indices of otter trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	ŀ	l₀: All media	ans are equal
Winter	36	1.40984	56.0	1.13	Alternative	F	l₁: At least c	one median is
Spring	32	1.22619	45.3	-1.43	hypothesis	C	lifferent	
Summer	34	1.41769	52.6	0.26	Method	DF	H-Value	P-Value
Overall	102		51.5		Not adjusted for ties	2	2.28	0.320
					Adjusted for ties	2	2.28	0.320
Table of P	-value	es (adjusted	l for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	3		
					Family Alpha:		0.017	
Winter		1.00000	*	*	Bonferroni Individu			
Spring		0.13703	1.00000	*	Bonferroni Z-value	(2-sic	led): 2.773	3
Summer		0.63108	0.31706	1				

Table 117. Results of Kruskal-Wallis test and Dunn's multiple comparison test between Margalef richness indices of otter trawl collections for each flow tier.

Group)	Ν	Median	Mea	in Rank	Z-Valu	e	Null hypothesis		H ₀ : All mediar	is are equal
Avg-S	Sub	20	1.6042	1 65.6	5	2.38		Alternative hypoth		H₁: At least or different	ie median is
Avg-E	Base	12	1.4153	2 55.8	3	0.53		Method	DF		P-Value
Avg-3	ßps	16	0.9515	5 37.9	9	-2.00					
Wet-2	2ps	12	1.3082	46.1	l	-0.68		Not adjusted for ties	5	10.66	0.059
Wet-9	Sub	18	1.4125	9 57.8	3	0.99		Adjusted for ties	5	10.66	0.059
Wet-B	Base	24	1.3203	44.6	5	-1.30					
Overa	all	102	2	51.5	5						
Table	of P-	valu	es (adjus	sted for t	ies)			Comparisons:		15	
	Avg-		Avg-			Wet-	Wet-	Ties:	3		
	Sub		Base	0 1	2ps	Sub	Base	Family Alpha:		0.083	
	545		Buse		200	500	Buse	Bonferroni Individu	ual Al	pha: 0.006	
Avg- Sub	1.000	000	*	*	*	*	*	Bonferroni Z-value		•	
Avg- Base		397	1.00000	*	*	*	*				
Avg- 3ps	0.005	531	0.11408	1.00000	*	*	*				
Wet- 2ps	0.070)86	0.42157	0.47096	1.00000	*	*				
Wet- Sub	0.415	581	0.85706	0.05099	0.28890	1.00000	*				
Wet- Base	0.019	933	0.28667	0.48239	0.89070	0.15462	1				

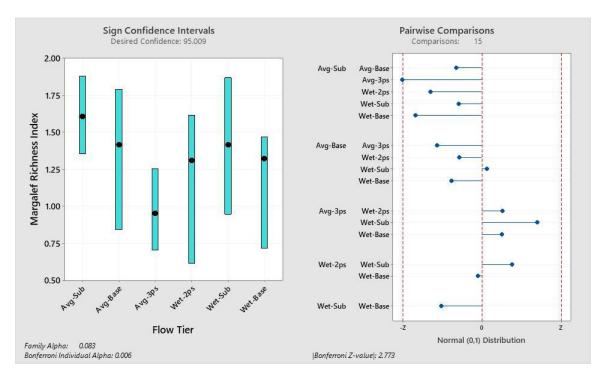


Figure 71. Dunn's multiple comparison test for significant differences in otter trawl Margalef richness indices between flow tiers. Bars signify the 95.009% confidence interval of the median (\bullet = median). Pairwise comparisons greater than the |Bonferroni-adjusted critical Z-value| indicates a significant difference between sites ($p \le 0.006$).

Group)	Ν	Median	Mean Rank	Z-Va	ue	Null hypothesis	F	I ₀ : All media	ans are equal
B01		25	2.4490	55.0	-0.74	1	Alternative	F	l ₁ : At least o	one median is
B10		25	5.5319	59.7	0.04		hypothesis	C	lifferent	
B22		25	7.6364	58.9	-0.10)	Method	DF	H-Value	P-Value
B31		25	8.3544	56.7	-0.45	5	Not adjusted for ties	4	2.34	0.674
B42		18	11.9161	70.1	1.43		Adjusted for ties	4	2.35	0.672
Over	all	118		59.5						
Table	of F	-valu	es (adjusted	l for ties)			Comparisons:		10	
	B0	1	B10	B22	B31	B42	Ties:	21	0.050	
B01	1.0	00000	*	*	*	*	Family Alpha: Bonferroni Individu		0.056 oha: 0.00	6
B10	0.6	52189	1.00000	*	*	*	Bonferroni Z-value	(2-sic	led): 2.773	3
B22	0.6	58464	0.93065	1.00000	*	*				
B31	0.8	35531	0.75594	0.82292	1.00000	*				
B42	0.1	5145	0.32552	0.28787	0.20495	1				

Table 118. Results of Kruskal-Wallis test and Dunn's multiple comparison test between CPUE of beam trawl collections for each sample site.

Table 119. Results of Kruskal-Wallis test and Dunn's multiple comparison test between CPUE of beam trawl collections for each season.

Group	Ν	Median	Mean Rank	Z-Value	Null hypothesis	F	I ₀ : All media	ans are equal
Winter	36	12.6650	65.4	3.86	Alternative	F	l₁: At least c	one median is
Spring	32	10.0000	59.7	2.18	hypothesis	C	lifferent	
Summer	32	0.0000	24.5	-6.16	Method	DF	H-Value	P-Value
Overall	100		50.5		Not adjusted for ties	2	38.59	0.000
					Adjusted for ties	2	38.90	0.000
Table of P	-value	es (adjustec	l for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	21		
Winter		1.00000	*	*	Family Alpha: Bonferroni Individu	ual Alp		
Spring		0.41601	1.00000	*	Bonferroni Z-value	(2-510	ieu): 2.773	5
Summer		0.00000	0.00000	1				

Table 120. Results of Kruskal-Wallis test and Dunn's multiple comparison test betweenCPUE of beam trawl collections for each flow tier.

Group	Ν	Median	Mean Rank	Z-Val	ue	Null hypothesis	H ₀ : All medians are equal	
Avg-Sub	20	8.7043	57.9	1.28			- 1	
Avg-Base	12	8.0247	54.5	0.51		Alternative hypothesis	H ₁ : At least one mee is different	dian
Avg-3ps	16	9.3391	54.2	0.55		Method D	F H-Value P-Value	2
Wet-2ps	8	11.0916	61.5	1.12		5	7.97 0.158	
Wet-Sub	20	1.5400	36.2	-2.47		for ties		
Wet-Base	24	4.9676	48.1	-0.46		Adjusted for 5 ties	8.04 0.154	
Overall	100		50.5					
Table of	P-va	lues (adji	usted for tie	es)		Comparisons:	15	
Avg-		-		Wet-	Wet-	Ties:	21	
Sub		ase	2ps	Sub	Base	Family Alpha:	0.083	
			·			Bonferroni Indiv	idual Alpha: 0.00)6
Avg- 1.00 Sub	000 *	*	*	*	*	Bonferroni Z-val	•	
Avg- 0.74 Base	727 1	.00000 *	*	*	*			
Avg- 0.70 3ps	168 0	.97741 1.0	0000 *	*	*			
Wet- 0.76 2ps	584 0	.59559 0.5	5893 1.00000	*	*			
Wet- 0.01 Sub	756 0	.08284 0.0	6346 0.03635	1.00000	*			
Wet- 0.26 Base	385 0	.53262 0.5	1565 0.25687	0.17285	1			

Table 121. Results of Kruskal-Wallis test and Dunn's multiple comparison test betweenCPUE of otter trawl collections for each sample site.

Group	D N		Median	Mean Rank	Z-Val	ue	Null hypothesis	F	I ₀ : All media	ins are equal	
B01	20	6	16.1330	82.1	3.47		Alternative		l₁: At least c lifferent	one median is	
B10	2	6	11.7153	69.9	1.46		hypothesis			D.)/elue	
B22	2	5	2.8667	51.6	-1.51	I	Method	DF	H-Value	P-Value	
B31	2	5	6.1050	62.3	0.21		Not adjusted for ties	4	27.27	0.000	
B42	19	9	0.9333	30.6	-4.12	2	Adjusted for ties	4	27.27	0.000	
Over	all 12	21		61.0							
Table	of P-va	alue	es (adjusted	l for ties)			Comparisons: 10				
	B01		B10	B22	B31	B42	Ties:	6			
B01	1.000	000	*	*	*	*	Family Alpha: Bonferroni Individu Bonferroni Zavalue	ii Individual Alpha: 0.006			
B10	0.208	863	1.00000	*	*	*	Bonferroni Z-value (2-sided): 2.773				
B22	0.001	87	0.06216	1.00000	*	*					
B31	0.043	871	0.44015	0.27897	1.00000	*					
B42	0.000	000	0.00020	0.04886	0.00292	1					

Table 122. Results of Kruskal-Wallis test and Dunn's multiple comparison test between CPUE of otter trawl collections for each season.

Group N Median		Mean Rank	Z-Value	Null hypothesis	H ₀ : All medians are equal			
Winter	36	14.6604	55.6	1.04	Alternative	F	l₁: At least o	one median is
Spring	32	2.5667	39.5	-2.77	hypothesis	d	ifferent	
Summer	34	15.0273	58.4	1.67	Method	DF	H-Value	P-Value
Overall	102		51.5		Not adjusted for ties	2	7.82	0.020
					Adjusted for ties	2	7.82	0.020
Table of P	-value	es (adjustec	l for ties)		Comparisons:		3	
		Winter	Spring	Summer	Ties:	1		
Winter		1.00000	*	*	Family Alpha: 0.017 Bonferroni Individual Alpha: 0.006			
Spring		0.02477	1.00000	*	Bonferroni Z-value (Z-SIC	iea): 2.773	5
Summer		0.69515	0.00946	1				

Table 123. Results of Kruskal-Wallis test and Dunn's multiple comparison test betweenCPUE of otter trawl collections for each flow tier.

Group	Ν	Median	Mean Rank	Z-Val	ue	Null hypothesis	H ₀ : All medians are equal
Avg-Sub	20	18.3139	62.3	1.81			-
Avg-Base	12	3.9433	45.3	-0.77		Alternative hypothesis	H ₁ : At least one median is different
Avg-3ps	16	2.2667	33.1	-2.71		Method D	F H-Value P-Value
Wet-2ps	12	5.1060	49.9	-0.20		Not adjusted 5	15.91 0.007
Wet-Sub	18	23.2911	68.2	2.64		for ties	
Wet-Base	24	4.7722	46.1	-1.02		Adjusted for 5 ties	15.91 0.007
Overall	102		51.5				
Table of Avg- Sub	A		usted for tie -3ps Wet- 2ps	es) Wet- Sub	Wet- Base	Comparisons: Ties: Family Alpha:	15 1 0.083
Avg- 1.00 Sub	000 *	*	*	*	*	Bonferroni Indiv Bonferroni Z-val	•
Avg- 0.11 Base	741 1	* 00000 *	*	*	*		
Avg- 0.00 3ps	334 0	.27995 1.00	0000 *	*	*		
Wet- 0.25 2ps	365 0	.70437 0.13	3726 1.00000	*	*		
Wet- 0.53 Sub	443 0	.03792 0.00	0056 0.09690	1.00000	*		
Wet- 0.07 Base	186 0	.93968 0.1	7342 0.71702	0.01661	1		